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1
OBJECTIVE WEIGHING AND RANKING

BACKGROUND

In order to encourage decision makers to specify their
preferences regarding different objectives in a multi-objec-
tive optimization problem and assist them in choosing a solu-
tion under uncertainty, the concept of weights and their
robustness was introduced. This concept is essential for the
decision maker to understand the nature of the selected solu-
tion and may lead the decision maker to better understand the
compromise associated with the solution. In practice, many
of the existing methods are based on the usage of a utility
function that combines all the objectives, with their corre-
sponding weights, into one function. However, it has been
argued that such approaches suffer from lack of understand-
ing of the weights concept by the decision makers, since the
notion of weights in use is often too complex and even
counter-intuitive.

The foregoing examples of the related art and limitations
related therewith are intended to be illustrative and not exclu-
sive. Other limitations of the related art will become apparent
to those of skill in the art upon a reading of the specification
and a study of the figures.

SUMMARY

The following embodiments and aspects thereof are
described and illustrated in conjunction with systems, tools
and methods which are meant to be exemplary and illustra-
tive, not limiting in scope.

There is provided, in accordance with an embodiment, a
method comprising using at least one hardware processor for:
receiving a multi-objective optimization problem; projecting
a Pareto frontier of candidate solutions for said multi-objec-
tive optimization problem to a hyperplane; decomposing said
hyperplane into multiple Voronoi regions each associated
with a candidate solution of said candidate solutions; deter-
mining a robustness degree for each candidate solution of'said
candidate solutions, by computing a hypervolume for each
region of said multiple Voronoi regions; computing a range of
weight vectors for each candidate solution of said candidate
solutions; and ranking said candidate solutions based on the
robustness degree.

There is further provided, in accordance with an embodi-
ment, a computer program product for ranking candidate
solutions of a multi-objective optimization problem, the com-
puter program product comprising a non-transitory com-
puter-readable storage medium having program code embod-
ied therewith, the program code executable by at least one
hardware processor for: receiving a multi-objective optimi-
zation problem; projecting a Pareto frontier of candidate solu-
tions for said multi-objective optimization problem to a
hyperplane; decomposing said hyperplane into multiple
Voronoi regions each associated with a candidate solution of
said candidate solutions; determining a robustness degree for
each candidate solution of said candidate solutions, by com-
puting a hypervolume for each region of said multiple
Voronoi regions; computing a range of weight vectors for
each candidate solution of said candidate solutions; and rank-
ing said candidate solutions based on the robustness degree.

In some embodiments, the method further comprises using
said at least one hardware processor for computing said
Pareto frontier.

In some embodiments, the method further comprises using
said at least one hardware processor for constructing a visu-
alization of said ranking.
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In some embodiments, said receiving of said multi-objec-
tive optimization problem comprises receiving a description
of multiple objectives and a weight associated with each
objective of said multiple objectives.

In some embodiments, the method further comprises using
said at least one hardware processor for: (a) computing other
Voronoi regions based on the received weight associated with
each of said objective, and (b) computing one or more inter-
sections between said multiple Voronoi regions and said other
Voronoi regions.

In some embodiments, said weight is a weight range.

In some embodiments, the method further comprises using
said at least one hardware processor for receiving a desired
degree of robustness for the weight associated with each
objective of the multiple objectives.

In some embodiments, the Pareto frontier is concave.

In some embodiments, the Pareto frontier is convex.

In some embodiments, the Pareto frontier is continuous.

In some embodiments, the Pareto frontier is discrete.

Insome embodiments, said at least one hardware processor
comprises two or more hardware processors, and wherein
said determining of said robustness degree is performed
simultaneously in multiple ones of said two or more hardware
processors.

In some embodiments, the program code is further execut-
able by said at least one hardware processor for computing
said Pareto frontier.

In some embodiments, said program code is further execut-
able by said at least one hardware processor for constructing
a visualization of said ranking.

In some embodiments, said program code is further execut-
able by said at least one hardware processor for receiving a
desired degree of robustness for the weight associated with
each objective of the multiple objectives.

In addition to the exemplary aspects and embodiments
described above, further aspects and embodiments will
become apparent by reference to the figures and by study of
the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

Exemplary embodiments are illustrated in referenced fig-
ures. Dimensions of components and features shown in the
figures are generally chosen for convenience and clarity of
presentation and are not necessarily shown to scale. The
figures are listed below.

FIG. 1A shows a graph of a convex Pareto Frontier, illus-
trating a possible scenario where a 50/50 preference is real-
ized;

FIG. 1B shows a graph of'a concave Pareto Frontier, illus-
trating another possible scenario where a 50/50 preference is
realized;

FIG. 2 shows a graph illustrating coordinates of projections
of the points A, B, C, D and E from a Pareto Frontier to a
hyperplane IT;

FIG. 3 shows a graph illustrating the dependency of the
number of vertices of a single Voronoi region upon the num-
ber of objectives;

FIG. 4 shows a graph illustrating the time needed for com-
puting the weights for all the points of a three-dimensional
Pareto Frontier as a function of the number of points on the
Frontier;

FIG. 5 shows a graph illustrating interaction between the
model and size factors;

FIG. 6 shows a flow chart of a method according to a
cartesian point approach;
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FIG. 7 shows an exemplary graphical user interface (GUI)
for visualizing an implicit embodiment; and

FIG. 8 shows an exemplary graphical user interface (GUI)
for visualizing an explicit embodiment.

DETAILED DESCRIPTION

Disclosed herein is a method (also “algorithm”) for inter-
preting the meaning that underlies self-reported weights in a
multi-objective optimization problem.

Advantageously, the present method acts as a filtering sys-
tem, capable of ranking a multiplicity of mathematically-
equivalent solutions to the problem. That is, the method may
assist a decision maker in making a choice between a number
of solutions which are all Pareto-efficient.

In one embodiment, referred to herein as “explicit”, the
decision maker may explicitly specify, a priori, his or her
preferences with regard to the objectives of the problem. That
is, the decision maker may input the desired weights for each
alternative objective, in order to discover which alternative
solution(s) correspond to this weight allocation. In another
embodiment the decision maker may input the desired
weights as range of weights for each alternative objective.

In another embodiment, referred to herein as “implicit”,
the decision maker does not explicitly specify his or her
preferences with regard to the possible solutions to the prob-
lem. Instead, the method may allow the decision maker to
explore and view one or more alternative solutions to the
problem, in order to discover the compromise (i.e. trade-off)
associated with these particular alternatives, in particular the
weights (or ranges of weights) associated with that candidate
solution. In other words, the decision maker may wish to
verify that the weights associated with his or her choice of
solutions indeed correspond to those objective preferences he
or she already had in mind.

The method, in some embodiments, may associate each
alternative solution with its corresponding profile, expressed
as a vector of weights, which represents the closest match
with the actual user profile. The term “user profile”, as
referred to herein, may relate to the importance the decision
maker (i.e. the user) assigns to the different objectives. This is
the profile that would have been elicited had the decision
maker been required to express preferences in terms of a
weights vector prior to making a decision.

The method, in some embodiments, may be universal and
able to associate each alternative solution with a set of
weights, regardless of the Pareto Frontier geometry (concave
or convex, continuous or discrete).

In some embodiments, the use of the weights vector by the
method is intuitively clear and easily interpreted by the deci-
sion maker. The method may cope with uncertainty as the
decision maker specifies preferences. Experiments con-
ducted by the inventors corroborate the method’s superiority
over prior art linear utility (LU) approach, at least in some
aspects.

The present method may be applicable, for example, to the
disciplines of artificial intelligence, decision analysis, opera-
tions research (OR) and/or the like. It may aid in industrial,
economic and various other multi-objective optimization
problems.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
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generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a hardware proces-
sor of a general purpose computer, special purpose computer,
or other programmable data processing apparatus to produce

2 <
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a machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The present method, also termed the Targeted Cartesian
Point (CP) method, is essentially an approach devised for
interpreting the meaning of weight vectors prescribed by a
decision maker. Unlike other methods, the present approach
is not utility-based. Instead of focusing on the aggregative
importance (namely—the aggregate utility value), the present
method relies on interpreting the weights vector as an impor-
tance ratio between the multiple objectives.

Therefore, the present approach implies that when the deci-
sion maker is examining a decision alternative, they are in fact
estimating how much more important one objective is than
the other, and comparing it to their preferences. In short, they
always have a preferred ratio of importance between the
different objectives. This leads to the crucial argument that
the decision maker associates the weights with a particular
Cartesian point within the objective space. More formally,
within the Cartesian objective space, Y =R ™, we consider
the hyperplane P, that comprises all the normalized vectors
mR™

?m:{;ﬁy o Mye1)

The Cartesian perspective features the following technical
question: What is the point on P, that is targeted by the
decision maker? This could be mathematically translated, for
example, to the question: What is the point on P ,, where the

line segment t-T® intersects (where t is a free-parameter).
FIGS. 1A-B illustrate the difference between the proposed
approach and a linear utility approach.

FIG. 6 is a flow chart of a method according to the CP
approach. In a step 600, a multi-objective optimization prob-
lem is received from a user. This may include receiving infor-
mation as to multiple possible objectives, such as the desir-
ability to minimize or maximize each individual objective.
The received information may differ based on the embodi-
ment utilized—“explicit” or “implicit”, as discussed above.

Consider, as an example, a conflict between environmental
and business interests (“objectives”) that is brought for legal
arbitration at a state court. The court rules to obtain the best
possible set of alternatives and to select the 50/50 solution
amongst them.

Inastep 602, a Pareto Frontier of candidate solutions to the
multi-objective optimization problem is computed, using
techniques known in the art.
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As an alternative to step 602, the Pareto Frontier may be
pre-provided as input, and not computed in the course of the
present method.

FIGS. 1A-B illustrates two scenarios, one of a convex
Frontier (FIG. 1A), versus a second concave Frontier (FIG.
1B). In the former scenario, had a utility function with
w,=w,=0.5 been used, solution A would have been selected
since it is the minimizer of the linear utility function. How-
ever, if the Cartesian Point approach is used, it will identify
solution B as the 50/50 point—reflecting a meet-in-the-
middle realization of the court’s rule. In the latter scenario,
solution A ;| would be selected with a w,=w,=0.5 linear utility
function, versus solution B with the Cartesian Point
approach.

FIG. 2 illustrates the CP approach in an elementary, exem-
plary case of two objectives. The Pareto Frontier is denoted by
the set of points: A, B, C, D, and E. The CP approach asserts
that for each point on the Frontier there exists a projection on
the hyperplane I, such as the points A,, B,, C;, D, E,, that
represent the importance criteria. Returning now to FIG. 6, in
a step 604, the Pareto Frontier is projected to the hyperplane
II.

For example, consider the decision alternative E: the
importance of f; is four-fold larger than the importance of f,
(w,=0.8 vs. w,=0.2). An algorithm for computing the weights
of objectives for every point of the Pareto Frontier, in accor-

dance with some embodiments, is described as Algorithm 1.
Algorithm 1:

computeWeights (Frontier F)

1: 1 < numberOfObjectives

2: fori=1...IFldo

3: forj=1...ndo

4 Fhllj]

Wil s

T Fan

5: end for

6: end for

7: fori=1...IFldo

8: forj=1...ndo

o Wi 1 = Werjiia
T - Weigig

10: end for

11: end for

12: return Wi, Wa

In many multi-objective problems, the resulting Pareto
Frontier is discrete, posing a challenge when matching deci-
sion alternatives to the user preferences. For example, follow-
ing the Pareto Frontier in FIG. 2, a 69/31 preference of impor-
tance between objectives (point F) is assumed. Unfortunately,
there is no specific decision alternative on the Frontier that fits
this exact preference. Therefore, the proposed method has to
be augmented with the concept of robustness, which is meant
to associate an exclusive range of weight vectors with each
decision alternative.

In FIG. 2, coordinates of projections of the points A, B, C,
D and E from the Pareto Frontier to the hyperplane IT define
the importance of the corresponding criteria for these solu-
tions. L, defines the robustness degree of weights for the
point D. If the decision maker specifies the preferences as
69/31 (the point F on this plot), then the solution D should be
suggested.
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In this case, the preference of 69/31 (point F) would be
associated with the decision alternative D. The reason for this
association is that the corresponding line between the origin
and point F is closer to the line 0D, than to the line OF, (the
notion of angle between lines is used to determine which line
is closer to another). Alternatively, the distance between
points F and D, is smaller than any other distance from point
F to the points E,, C;, B, or A,. This means the decision
maker is more likely to search for a solution in the OMN
region. Since this region contains only point D, just this
option should be proposed to the decision maker. Such rea-
soning leads to the understanding that the robustness degree
for this particular problem should be equal to the length L, of
the interval between points M and N.

Back to FIG. 6, in a step 606, the hyperplane II is decom-
posed (also “divided” or “partitioned”) into Voronoi regions.
If a special set of point-seeds is provided, the region consist-
ing of all the points that are closer to one particular seed is
referred to, in the art, as a Voronoi region. This concept may
be generalized to any number of objectives as follows: for an
objective space of any dimension, one can find projections of
the Pareto Frontier to the hyperplane I1 in that space. Closer
examination of the previous example reveals that the region
between points M and N consists of points that are closer to
the point D, than to any other point from II, hence it is a
Voronoi region for this point. Given that the concept of
Voronoi region is defined for any dimensional space, the
problem of computing the robustness degree is reduced to the
problem of computing the hypervolume of the corresponding
Voronoi region.

Algorithm 2 summarizes this as follows: First, the algo-
rithm calculates for each decision alternative an exclusive
Vornoi region (Line 3) by decomposing the IT hyperplane into
Voronoi regions. Since the decomposition is always done in a
space of dimension m-1, the rotation of the hyperplane is
required (Line 2, see also Algorithm 3). Next, in lines 5-8,
Algorithm 2 computes the minimum and maximum weight
per objective based on the Voronoi region (see details in
Algorithm 4).

In FIG. 6, in a step 608, a robustness degree for each
candidate solution us determined, by computing the hyper-
volume for each Voronoi region. In Algorithm 2, as shown,
the hypervolume of the region is calculated; this is a scalar
metric that is used to represent the robustness degree of the
decision alternative (see details in Algorithm 5).

Algorithm 2 (Pseudo-Code for Computing an Exclusive
Range of Weight Vectors Per Each Decision Alternative):

correspondcomputeRobustnessDegreeCartesian (Frontier F)

[W; W p,,;] < computeWeights(F)
W, < rotateWeights (Wp,.;)
V., = VoronoiDecomposition (W p,;)
hyperVolume « zeros (IV,,)
fori=1...(IV,ldo
[minRangel[i, :]; maxRangel[i, :]] <= computeRange(V,, ;)
hyperVolumel[i] < computeHypervolume(V,
end for
RD < hyperVolume
return W, RD, minRange, maxRange

or[i]

=0 00~ O RN

<

Algorithm 3 (Pseudo-code for rotating a hyperplane):
rotateWeights (Weights W)

1 < numberOfObjectives
forj=1...n-1do
W < moveHyperplaneToOrigin(W)
normal < computeNormalForHyperplane(W)
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-continued
5: normal [j]
@ « arctan) ——————
zm(normal [+ 1]]
6: M < In {/* Identity matrix */}
7: cos(@) —sin(a)
M[j:j+ 1] [j:j+1]<—( . ]
sin(e) cos(a@)
8: forj=1...Wldo
9: W [j,:] = MWI[i, ¥
10: end for
11: end for
12: return Wi][j]

Algorithm 4 (Pseudo-Code for Computing the Range of
Weight Vectors Per Decision Alternative):

computeRange (VoronoiRegion V R)

1: vertices < getVertices(V R)

2: min Values < min (vertices){/*Get vector consisting of minimum
values among all components*/}

3: max Values < max (vertices){/*Get vector consisting of maximum
values among all components*/}

4: return minValues, maxValues

Algorithm 5 (Pseudo-Code for Computing the Robustness
Degree Per Decision Alternative):

computeHypervolume (VoronoiRegion V R)

1: forj=1..1VRIdo

2 TES < buildTriangulation (V R)

3: forj=1..ITES Ido

4: hv < hv + computeHV(TES[i]) {/* Compute hv of
simplex as determinant™/}

5t end for

6: end for

7: return hv

In a step 610 of FIG. 6, the scalar metric, namely—the
hypervolume of each Voronoi region, is used for ranking the
candidate solutions to the multi-objective optimization prob-
lem. The candidate solutions may be ranked in accordance
with the volume of their respective Voronoi regions. Gener-
ally, the smaller the volume is, the higher the candidate solu-
tion is ranked. The ranking may include displaying, for
example on a computer monitor, an ordered list of the ranked
candidate solutions.

Optionally, the candidate solutions may be visualized,
within the framework of a graphical user interface (GUI)
operable in accordance with the present method. In some
embodiments, the candidate solutions are visualized accord-
ing to one or more of the visualization techniques discussed in
U.S. patent application Ser. No. 13/597,264 to Amid et al.,
filed Aug. 29, 2012.

Reference is now made to FIG. 7, which shows an exem-
plary graphical user interface (GUI) 700 for visualizing the
“implicit” embodiment. GUI 700 may visualize candidate
solutions of a multi-objective optimization problem, by way
of displaying a polygon whose number of vertices corre-
sponds to the number of objectives in the problem. In this
example, a triangle 702 is displayed, to visualize a three-
objective problem. The problem at hand is to suggest a suit-
ableresidence for a user. The three objectives at the vertices of
triangle 702 are a number of roommates (“roomies™) 704
sharing the residence, a distance 706 of the residence from a
geographic point of interest, and an amount of rent 708 asked
for the residence.
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At each of the vertices, the optional “min” and “max”
values denote the range of values that objective has across the
Pareto frontier.

Candidate solutions to the problem may be displayed, for
example, as circles, such as circles 710 and 712. Each such
circle may be divided into a number of slices, corresponding
to the number of objectives. In this example, each of circles
710 and 712 is divided into three slices. The weight of each
objective in a candidate solution may be visualized as an arc
in the respective slice, whose radius corresponds to the rela-
tive weight.

According to this “implicit” embodiment, the user may
select a candidate solution such as by hovering over it or
clicking on it. Then, the values that solution has on the Pareto
fronties, as well as the weight (or weight range) associated
with that solution, may be displayed. For example, this dis-
play may be in the form of a tooltip 714, with respect to a
selection of the solution of circle 712.

Reference is now made to FIG. 8, which shows another
exemplary GUI 800 for visualizing the “explicit” embodi-
ment. Similar to GUI 700 (FIG. 7), GUI 800 visualizes can-
didate solutions of the residence selection problem, by way of
displaying a triangle 802. The three objectives at the vertices
of triangle 802 are, as before, a number of roommates (“roo-
mies”) 804 sharing the residence, a distance 806 of the resi-
dence from a geographic point of interest, and an amount of
rent 808 asked for the residence.

Initially, when GUI 800 is displayed, it may show triange
802 and a plurality of candidate solutions. As before, solu-
tions may be represented by circles, such as circles 812, 814,
816 and 818.

The user may then be prompted to allocate a weight (or a
range of weights) to each of the objectives. For example, a
weight selection pane 810 may be shown, enabling the user to
enter weights. Upon clicking a “run” button or otherwise
confirming the entry of the weights, GUI 800 executes the
present method, and displays its results by highlighting or
otherwise indicating which of the candidate solutions are
ranked the highest. In this example, circles 812, 814 and 816
are highlighted, meaning that they represent the highest-rank-
ing solutions.

The computational complexity of the present approach will
now be described. Let N denote the number of points in the
Pareto Frontier, and let m denote the number of objectives.
Given Algorithm 2, it is evident that exactly one iteration of
computing the hypervolume of a Voronoi region is performed
per each one of the points in the Pareto Frontier. The time
needed for each iteration seemingly depends upon the num-
ber of vertices of the corresponding region. One may assume
that this number is approximately the same for every Voronoi
region. Following this rationale, the complexity of the present
algorithm may be estimated as O(N). Computational experi-
ments with three objective problems, performed by the inven-
tors, corroborate this estimation. See FIG. 4, which illustrates
the time needed for computing the weights for all the points of
a three-dimensional Pareto Frontier as a function of the num-
ber of points on the Frontier. The experiment was carried out
on a machine with an Intel 17 CPU with four processors at
2.20 GHz.

However, the time needed for a single iteration of the
algorithm increases dramatically as the number of objectives
rises. This may be explained by the complexity of the under-
lying geometrical algorithms used by the present method,
which run longer on higher dimensional spaces. As an esti-
mation for a single iteration, let us denote by n, the average
number of vertices of a Voronoi region. It is clear that as n,,
increases, it takes longer to triangulate the region and com-
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pute its hypervolume. The computational experiments show
that the dependency of n, upon the number of objectives
resembles the curve depicted in FIG. 3.

FIG. 3, to which reference is now made, illustrates the
dependency of the number of vertices of a single Voronoi
region upon the number of objectives. When comparing the
plot for the three-objective problem presented in FIG. 4 to the
trend illustrated in FIG. 3, one can expect it to take much
longer to compute the weights for all the points of higher
dimensional Pareto Frontiers. It should be noted that the
proposed calculation can be implemented in a parallel com-
putation, executing the evaluation steps per each point in an
independent computing unit, such is using separate cores of a
multi-core CPU (Central Processing Unit, also “hardware
processor”) and/or separate CPUs.

Experimental Results

This section evaluates the method of the present embodi-
ments (CP), by comparing it with the prior art Linear Utility
(LU) method.

A 2x3x2 (computation method, visualization type, prob-
lem complexity) mixed experimental design was carried out
to test for the differences in choice accuracy of the computa-
tion methods. This design included a manipulation of the
weight computation method (i.e., CP vs. LU) as the first
factor. The hypothesis tested for is that on average, both
methods yield a similar level of accuracy when compared
with the self-reported weights. To account for additional pos-
sible background factors, a manipulation of the type of visu-
alization used to facilitate the decision making was
employed, as well as two degrees of problem complexity.

For the manipulation of visualization type, each participant
was randomly assigned to one of three multivariate visualiza-
tion groups:

1. Parallel Coordinates (PC; see Isenberg, A. and Dimsdale,
B. Parallel Coordinates: a Tool for Visualizing Multi-Di-
mensional Geometry. Im Proceedings of the 1* conference
on Visualization *90, VIS 90, IEEE Computer Society
Press (Los Alamitos, Calif., USA, 1990), 361-378);

2. Self Organizing Map for Multi-Objective Pareto Frontiers
(SOMMOS; see Chen, S., Amid, D., Shir, O., M., Boaz, D.,
Schreck, T., Limonad, L., and Anaby-Tavor, A., Self-Orga-
nizing Maps for Multi-Objective Pareto Frontiers. In Pro-
ceedings of IEEE Pacific Visualization, IEEE Press (2013);
and

3. A plain tabular representation.

For the manipulation of problem complexity, each partici-
pant was asked to make two consecutive choices, correspond-
ing to two sizes of Pareto frontiers: 15 and 65 solution alter-
natives. Implied from this design, the experiment also tested
for the differences in accuracy between each of the two addi-
tional factors, and for all possible interactions among them.
The order in which the two problems were presented to each
participant was counter balanced across participants.

Measurements:

The manipulation for each of the three independent vari-
ables was inherent in the experimental design. To determine
the degree of choice accuracy as the dependent variable, each
computation method was used to calculate its corresponding
weights. This was followed by a distance computation with

respect to the self-reported weights, denoted by d(Wp, W),
where Wp is the vector of weights specified by a participant,

and w is the vector of weights computed by one of the meth-
ods. The smaller the distance, the closer the model (i.e., CP or
LU) to the participant’s self-reported preferences.
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Procedure:

In the beginning of the experiment, each participant was
given a 15 minute computer-based training session about
multi-criterion decision making and the use of the corre-
sponding visualization tool. The training was followed by a
short quiz with 10 questions to ensure they were adequately
qualified to complete the experimental task. Facilitated by the
visualization means, each participant was then required to
complete two decision making tasks. Each task presented a
different set of apartments to be examined according to three
objectives: distance from the university, number of room-
mates, and price. The participants were instructed to choose a
single apartment as their most desired choice. It should be
mentioned that there were no dominated alternatives in the
dataset and the corresponding Pareto Frontier was convex.

12

below a predefined threshold score of 70%), and 3 additional
questionnaires that were improperly filled out, 83 useful
responses were compiled in the analysis.

Reliability:

5 It was expected that individual choices would reflect con-

sistency in preferences across the two levels of complexity.
This was due to the rational that individual preferences do not
change as the number of choices presented to the decision
maker is manipulated. Hence, the reliability of responses was

10 evaluated using Pearson correlations. The results are illus-

trated in Table 2. As marked in bold, weight-wise correlations
exist only between the corresponding weights that were com-
puted by the CP method. The underlined correlations indicate
weight-wise inconsistencies across the two levels of com-
plexity for the LU method. It may be inferred that, regardless

. . S 15 * o : o .
Following the two choices, participants were then asked to of'its accuracy, the LU method is sensitive to the size of the
explicitly report their weights regarding the three objectives frontier.
TABLE 1
Descriptive Statistics
ViZ PC SOMMOS Table Total
Method  Size M SD n M SD n M SD n M SD n
CP BIG 025 010 29 026 016 25 027 013 29 026 013 83
SMALL 024 010 29 027 016 25 026 014 29 026 013 83
Total 024 010 58 027 016 50 027 013 58 026 013 166
LU BIG 032 016 29 031 018 25 034 015 29 032 016 83
SMALL 042 0.16 29 042 019 25 046 016 29 044 017 83
Total 037 017 58 037 019 50 040 017 58 038 017 166
Total  BIG 028 014 58 028 017 50 031 014 58 029 015 166
SMALL 033 0.16 58 035 019 50 036 018 58 035 018 166
Total 031 015 116 032 018 100 033 016 116 032 017 332
TABLE 2
Reliability Measurement
BIG
CP MIP
SIZE METHOD Weight wl w2 w3 wl w2 w3
SMALL CP wl JTEARE _A04RE _5E2%K 30%E 455 S47w%
w2 -319%F  473% _ 020 —332%F 462%* 004
w3 —628%F 023 720%*  -572%F 008 686%*
LU wl -097  313* -.147 -.169 330%* -.096
w2 155 =207 -.010 191 -.233% -.031
w3 -098 192 276 036 -.176 223

reflecting their previous choices. Intentionally, participants
were not informed about the possible interpretations for these
weights, aside from instructing them to simply indicate these
weights in a form of three non-negative scores that sum to
one. These results were used as the intuitive self-reported
profile in our analysis.

Participants:

A group of 89 undergraduate students volunteered to take
part in our experiment. To motivate performance, a monetary
prize was offered to the 10% topmost performers. Partici-
pants were explained that performance scores will reflect the
level of consistency among all choices with respect to the
self-reported preferences. All participants were senior engi-
neering students who were familiar with the problem domain
presented. Hence, the participants might be considered
experts in the problem they were trying to solve. After elimi-
nating students who failed the quiz (i.e., 3 in total who scored

55

Data Preparation:

Prior to running the statistical analysis, the data was coded
and verified using an automated script to scan for inadequate
responses that did not match the original alternatives pre-
sented. A first scan identified 29 erroneous choices. These
choices were verified against the original hand-written ques-
tionnaires and re-coded wherever it was possible to resolve
the mismatch. A second scan identified only three erroneous
choices that could not be resolved. Consequently, these

60 responses were dropped.

Statistical Analysis:

A three-way ANOVA (analysis of variance) was conducted
for testing for the differences in accuracy measurements
between the different groups.

65 Results:

Descriptive statistics with respect to the three factors of
method, size, and visualization type, are illustrated in Table 1.
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Table 3 illustrates the results of the analysis. For brevity,
only significant results (i.e., a<0.05) are reported. As can be
observed, the results indicate two significant main effects.
However, more importantly for the interpretation, the results
show a significant interaction between the model (i.e., com-
putation method) and the size of the Pareto Frontier (i.e.,
problem complexity). Correspondingly, post-hoc analysis
employing pairwise comparisons was pursued.

TABLE 3
ANOVA Results:
Factor Sum Sq. d.f. Mean Sq. F p-value
Model 1.14 1 1.14 50.11 0
Size 0.26 1 0.26 11.38 0.001
Model x Size 0.27 1 0.27 12.24 0.001
Post-Hocs:

FIG. 5 illustrates the interaction between the two factors of
model and size. The Cartesian Point approach seems indif-
ferent to the size of the Pareto Frontier, while the Linear
weights works better for larger Pareto Frontiers. Following
the significant interaction, post-hoc analyses was performed
using the Fisher LSD (Least Significant Difference) tests, as
reported in Table 4. It is apparent that the CP method is
significantly more accurate than the LU method, regardless of
the size of the Pareto Frontier. Consistent with the reliability
tests, the CP approach is not sensitive to the size of the Pareto
Frontier while the LU approach is.

TABLE 4
Pairwise Comparisons Between the Methods
CP LU
M SD n M SD n p-value
Small 0.264 0.13 83 0.457 0.15 83 0
Big 0.274 0.12 83 0.336 0.15 83 0.011

Based on the results from the empirical evaluation, it is
possible to refute the main null hypothesis according to which
both computation methods are equally accurate. Specifically,
the experiment conducted provides clear evidence that the CP
method is significantly more accurate than the LU method
when compared with the self-reported preferences. These
results hold independent of the multivariate visualizations
that were used by the various groups, and remain valid across
both levels of complexity. Finally, it was also observed that
unlike the CP method, the LU method is a non-reliable mea-
surement, being sensitive to the degree of problem complex-
ity.

The flowcharts and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
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noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The descriptions of the various embodiments ofthe present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed is:
1. A method comprising using at least one hardware pro-
cessor for:
receiving a multi-objective optimization problem;
projecting a Pareto frontier of candidate solutions for said
multi-objective optimization problem to a hyperplane;

decomposing said hyperplane into multiple Voronoi
regions each associated with a candidate solution of said
candidate solutions;
determining a robustness degree for each candidate solu-
tion of said candidate solutions, by computing a hyper-
volume for each region of said multiple Voronoi regions;

computing a range of weight vectors for each candidate
solution of said candidate solutions; and

ranking said candidate solutions based on the robustness

degree.

2. The method according to claim 1, further comprising
using said at least one hardware processor for computing said
Pareto frontier.

3. The method according to claim 1, further comprising
using said at least one hardware processor for constructing a
visualization of said ranking.

4. The method according to claim 1, wherein said receiving
of said multi-objective optimization problem comprises
receiving a description of multiple objectives and a weight
associated with each objective of said multiple objectives.

5. The method according to claim 4, further comprising
using said at least one hardware processor for: (a) computing
other Voronoi regions based on the received weight associ-
ated with each of said objective, and (b) computing one or
more intersections between said multiple Voronoi regions and
said other Voronoi regions.

6. The method according to claim 4, wherein said weight is
a weight range.

7. The method according to claim 1, further comprising
using said at least one hardware processor for receiving a
desired degree of robustness for the weight associated with
each objective of the multiple objectives.

8. The method according to claim 1, wherein the Pareto
frontier is concave.

9. The method according to claim 1, wherein the Pareto
frontier is convex.

10. The method according to claim 1, wherein the Pareto
frontier is continuous.

11. The method according to claim 1, wherein the Pareto
frontier is discrete.

12. A computer program product for ranking candidate
solutions of'a multi-objective optimization problem, the com-
puter program product comprising a non-transitory com-
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puter-readable storage medium having program code embod-
ied therewith, the program code executable by at least one
hardware processor for:

receiving a multi-objective optimization problem;

projecting a Pareto frontier of candidate solutions for said
multi-objective optimization problem to a hyperplane;

decomposing said hyperplane into multiple Voronoi
regions each associated with a candidate solution of said
candidate solutions;

determining a robustness degree for each candidate solu-
tion of said candidate solutions, by computing a hyper-
volume for each region of said multiple Voronoi regions;

computing a range of weight vectors for each candidate
solution of said candidate solutions; and

ranking said candidate solutions based on the robustness
degree.

13. The computer program product according to claim 12,
wherein the program code is further executable by said at
least one hardware processor for computing said Pareto fron-
tier.
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14. The computer program product according to claim 12,
wherein said program code is further executable by said at
least one hardware processor for constructing a visualization
of said ranking.

15. The computer program product according to claim 12,
wherein said receiving of said multi-objective optimization
problem comprises receiving a description of multiple objec-
tives and a weight associated with each objective of said
multiple objectives.

16. The computer program product according to claim 15,
wherein said weight is a weight range.

17. The computer program product according to claim 12,
wherein said program code is further executable by said at
least one hardware processor for receiving a desired degree of
robustness for the weight associated with each objective of
the multiple objectives.

18. The computer program product according to claim 11,
wherein the Pareto frontier is concave.

19. The computer program product according to claim 11,
wherein the Pareto frontier is convex.

20. The computer program product according to claim 11,
wherein the Pareto frontier is discrete.
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