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Abstract

This manuscript introduces the optimization of dynamic molecular alignment by means of shaped fem-
tosecond laser pulses, and analyzes the application of specific Derandomized Evolution Strategies (DES) to
this challenging high-dimensional Quantum Control problem. With a computationally expensive noise-free
simulator, specific DES variants based on low-dimensional parameterization of the electric field are applied
to the task and compared among each other. In addition, a new parameterization approach for learning a
function, based on complete-basis functions, is introduced and applied to the problem. A simplified vari-
ant of the alignment problem is then comprehensively analyzed, on which selected parameterizations and
optimization routines are shown to consistently attain optimal and sub-optimal sets of solutions. The com-
bined study of algorithms and parameterizations provides altogether a sharper observation of optimality.
Some conclusions concerning first- versus second-order information in DES are drawn. Some of the methods
reported here can likely be transferred to more generalized high-dimensional problem domains, where the
input solution is specified by a parameterized curve that undergoes spectral transformations.

Keywords: Simulation-Based Optimization, Derandomized Evolution Strategies, CMA-ES, Quantum Con-
trol, Laser Pulse Shaping, Dynamic Molecular Alignment, Evolutionary Approach to Many-Parameter Physics.

1 Introduction

While the usefulness as well as the powerful performance of contemporary Evolutionary Algorithms (EAs) [1]
cast no doubt, the determination of efficient evolutionary routines operating in the realm of computationally
expensive simulators is much needed. Such simulations are often deployed in physics, and they require robust
methods which will drive an optimization campaign into maximal yield with as few simulator evaluations as
possible, and without considering approximate surrogate models. This manuscript discusses the deployment of
specific EAs, namely Derandomized Evolution Strategies (DES) [2, 3], for the optimization of an application
from the field of physics, and investigates the interplay between algorithms to parametrization in the light of
convergence speeding-up. While the main focus here is on the application to a specific use-case, this manuscript
might also be interesting for researchers who apply EAs to computationally expensive simulations in other
domains. The results that we shall describe in this manuscript for the prescribed application domain, can
likely be transferred to similar problems, where the input solution is specified by a parametrized curve, and in
particular when this curve undergoes spectral transformations.

Controlling the motion of atoms and molecules has been a dream since the early days of Quantum Mechanics.
Although this quest initially met with failure, the foundation of the Quantum Control (QC) field in the 1980s,
throughout the development of various approaches [4, 5, 6], has finally brought this dream to fruition. Quantum
Control, sometimes referred to as Optimal Control or Coherent Control, aims at altering the course of quantum
dynamics phenomena for specific target realizations. There are two main threads within Quantum Control,
theoretical versus experimental control, as typically encountered in physics. They have experienced an amazing
increase of interest during the past 10 years, in parallel to the technological developments of ultrafast laser pulse
shaping capabilities, that made it possible to turn the dream into reality. For a broad field review see [7, 8, 9].

Quantum Control Theory (QCT) [10, 11] aims at manipulating the quantum dynamics of a simulated system
by means of an external control field, which typically corresponds to a temporal electromagnetic field arising
from a laser source. Explicit details concerning the simulated system, expressed by means of its Hamiltonian, are
required. Typically, no constraints such as fluence or resolution, are considered. Quantum Control Experiments
(QCE) [6], on the other hand, consider the realization of QC in the real-life laboratory, aiming at applying closed
learning-loops for altering the course of quantum phenomena. Here, the yield, or success-rate, correspond
to a physical measurement, whereas no model Hamiltonian is required. The nature of the optimization is
fundamentally different than in QCT, due to the posed laboratory constraints: limited bandwidth, limited
fluence, control resolution, proper basis, etc.
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The QC application to dynamic molecular alignment (for a review, see [12]) is of considerable interest in
this context because of its many practical consequences: a multitude of chemical and physical processes ranging
from bimolecular reactions [13] to high harmonic generation [14] are influenced by the angular distribution of
the molecular sample. Furthermore, in many fundamental molecular dissociation or ionization experiments the
interpretation of the collected data becomes much easier when the molecules are known to be aligned with
respect to a certain axis. Hence, techniques to generate molecular alignment are much needed.

In this study we consider a numerical modeling of the dynamic molecular alignment, driven by a known
Hamiltonian, but designed in a lab-oriented manner. In essence, it is QCT combined with some QCE char-
acteristics, and we set it as our representative use-case of computationally expensive simulations. We choose
to restrict this study to noise-free simulations, as we are interested in the physics of the system, rather than
conducting an actual simulation of real laboratory experiments.

The goal that we want to achieve in this manuscript is twofold, and it is thus divided into two parts, respec-
tively. The first part of this paper is devoted to a large extent to an investigation of the performance of specific
Evolution Strategies variants [2, 3], as well as parametrization, with respect to the given optimization task.
Especially, it focuses on a comparison between first-order to second-order Derandomized Evolution Strategies,
that correspond to employing a number of strategy parameters scaling linearly (individual step-sizes) versus
quadratically (arbitrary normal mutations, by means of a full covariance matrix) with the search space dimen-
sionality. The second part concentrates on the physical interpretation of the obtained optimal solutions. In
particular, we will investigate the underlying fine details that characterize the attained solutions, and deepen
into the interplay between optimality of solutions to the optimization aspects of parametrization and scalability.

The remainder of this paper is organized as follows. In Section 2 the dynamic molecular alignment will be
introduced, and its numerical modeling will be outlined. Section 3 describes the optimization routines in use,
namely Derandomized Evolution Strategies. The experimental procedure of the alignment problem is described
in Section 4. Section 5 presents a new parametrization approach for learning a function, based on complete-basis
functions, and describes its application to the alignment problem. A simplified variant of the problem is studied
in Section 6, in order to allow a better understanding of the optimal parametrization. Finally, a scalability
study of the problem is conducted and presented in Section 7. Section 8 draws some conclusions and discusses
directions for future research.

2 Use-Case: Molecular Alignment

The reader who wishes to abstract from the physics details could simply view our selected use-case for this
study as a non-linear problem of finding an optimal functional, with real-world applications. It uses a high-
dimensional multi-point representation of that functional, where the dimensions under investigation are in the
range of 80− 1000, and employs a simulator with a duration of 35s per single evaluation.

2.1 Background

Using laser electric fields, molecular alignment can be achieved in two manners: if the envelope of the field
changes slowly compared to the timescale of molecular rotation (usually in the picosecond regime), each rota-
tional state of the initial Boltzmann distribution is transformed adiabatically into a pendular state. The draw-
back of this approach is that any alignment produced while the field is on will disappear when it is switched off
again, so that experiments with the aligned sample cannot be performed under field free conditions. The oppo-
site strategy is followed in impulsive alignment, where the duration of the applied pulses is much shorter than
a rotational period [15]. In this case, a wavepacket of rotational states is created that can lead to considerable
field-free alignment. Both methods aim at creating a superposition of as many angular momentum eigenstates
as possible, as, due to the angular version of the uncertainty principle, a broad distribution in angular momen-
tum corresponds to a narrow angular distribution. However, both the amplitudes and the relative phases of the
composite rotational states have to be under control in order to achieve alignment. While for a pendular state,
which is an eigenstate of the combined molecule-field Hamiltonian, this requirement is automatically fulfilled,
a randomly phased superposition of rotational states will generally not interfere favorably in order to create
alignment. For the impulsive case, the evolution of the total wavefunction (after the electric field is turned
off) repeats with the revival time Trev = 1

2Bc (where B is the rotational constant of the molecule and c is the
speed of light). Partial revivals can be observed at Trev/2 and, to a lesser extent, at Trev/4, when one half or
one quarter, respectively, of the populated rotational levels have undergone an identical number of rotations.
Shaped femtosecond laser pulses that lead to a high degree of alignment manage to maximize the number of
rotational states that are in phase at these times. However, they have to fulfill an additional requirement: the
description of the molecule as a rigid rotator is strictly valid only for low field intensities, and the higher the
applied intensity, the more important other competing channels like dissociation and ionization will become.
Therefore, one would like to achieve good alignment while keeping the peak laser intensity as low as possible.
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For this reason varuiys publications have focused on finding pulse shapes other than a Fourier transform limited
(FTL) pulse that create a high degree of alignment. Leibscher et al. [16, 17] have theoretically shown that in
the nonperturbative regime a train of pulses lead to better alignment than a single FTL pulse. Each of the
spikes in such a train has to be synchronized with a half- or a full revival time. The suggested scheme has been
experimentally realized by measuring enhanced alignment of iodobenzene [18] and nitrogen [19], respectively,
when the molecular sample was irradiated by two short pulses with a delay corresponding to the rotational
period of the molecule. A further extension has been proposed by Underwood et al. [20], where the two pulses
were allowed to have different axes of polarization. For asymmetric molecules, orientation has been found to be
optimized by a sequence of kicks as well [21].
Such pulse sequences can be easily constructed and also optimized with respect to the relatively small num-
ber of parameters they contain. Therefore, they provide a good starting point for more complex optimization
schemes, where the electric field is characterized by many more parameters. To find good solutions in this high-
dimensional search space is a nontrivial task already for zero Kelvin temperature (T = 0), when considering
only the ground state in the initial distribution. For finite temperatures the alignment optimization has to be
performed simultaneously for a whole set of initial rotational quantum numbers, which, together with the large
number of parameters needed to describe an arbitrary pulse shape, renders the optimization problem even more
difficult.

2.2 Numerical Modeling

The interaction of a generic linear molecule with a laser field is described within the framework introduced
in [22]. Briefly, we calculate the time evolution of a thermal ensemble of molecules quantum mechanically by
performing calculations for a range of initial rotational levels, characterized by their rotational quantum number
Jinitial and the projection of the angular momentum on the laser polarization axis Minitial, respectively, and
Boltzmann averaging the results for a given temperature T . We take the molecule to be a rigid rotor, which
allows a description of its wavefunction solely in terms of the rotational eigenstates |JKM〉 (where K = 0 for
a diatomic molecule). Two electronic states are taken into account, the ground state denoted by X and an
off-resonant excited state denoted by A. Hence the wavefunction for a given M is expanded as

ΨM (t) =

Nrot
∑

J=M

αXJM (t)ψXJM + αAJM (t)ψAJM (1)

with Nrot = 20 rotational levels, where the ψXJ correspond to the even Legendre polynomials and the ψAJ

correspond to the odd Legendre polynomials. This expansion was confirmed to give converged results in the
present calculations.

The time dependence of the molecular wavefunction is given by

i
∂ΨM

∂t
= (H0 + V )ΨM (t) (2)

The Hamiltonian consists of a molecular part H0 and the interaction with the laser field, given by

V = ~µ · ~E(t) cos(ω0t) (3)

The Eigenenergies of H0 are given by
E(J) = hcBJ(J + 1) (4)

where B is the rotational constant of the molecule. The laser field induces transitions between the rotational
states which, in the off-resonant case, occur via subsequent Raman processes. The transitions between X and A
were assumed to proceed via the selection rules of the quantum numbers ∆J = ±1,∆M = 0. By inserting Eq.
1 into Eq. 2 and applying a transformation into a rotating frame, one ends up with a set of differential equations
for the expansion coefficients of the wavefunction into dressed states (see [22] for the explicit expressions).

The envelope of the laser field, which completely determines the dynamics after the transition to the rotating
frame has been performed, can be described by:

E(t) = R

{
∫

A(ω) exp(iφ(ω)) exp(iωt) dω

}

(5)

In the present calculation the control function is the spectral phase φ(ω), which defines the phase at n frequencies
{ωi}ni=1 that are equally distributed across the spectrum of the pulse. These n values {φ(ωi)}ni=1 are the decision
parameters to be optimized, and upon their calibration they are interpolated onto 214 points for the calculation
of the electric field in Eq. 5. In order to achieve a good trade-off between high resolution and optimization
efficiency, the value of n = 80 turned out to be a good compromise. The search space is therefore an 80-
dimensional hypercube spanning a length of 2π in each dimension. Real-laboratory pulse shapers typically use
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Figure 1: An overview of the numerical process. The control function is the phase (circled, top left), the
amplitude function is fixed and approximated by a Gaussian (bottom left). The shaping process (Eq. 5)
generates the electric field, E(t) (center). The “Schrödinger Box” of the alignment observable represents the
numerical calculation of the interaction between the electric field with the molecules, based on the specified
quantum dynamics equations. The revival structure (right) is the observed simulated behavior of the molecules,
upon which the yield value is based.

64 or 128 pixels for the spectral phase, so in that respect our simulation reflects a feasible realization. The
scalability aspect of the control phase will be addressed in Section 7.

The spectral function A(ω) is taken to be a Gaussian with a width chosen such that the full-width-at-half-
maximum (FWHM) length of the Fourier transform limited (FTL) pulse (obtained by setting φ(ω) ≡ 0) equals
100fs. With B = 5cm−1, as it was used in all the optimizations, the pulse is thus much shorter than the
rotational period of Trev = 3.33 ps. In order to keep the description as general as possible, the peak field
strength is not fixed explicitly; instead, we set the peak Rabi frequency ΩXA for the transition between the
X and the A electronic state, which is proportional to the product of peak field strength and the coupling
matrix element between X and A. Since the target application of the optimal control process is the dynamic
alignment of the molecules, the yield of the calculation (i.e., the objective function) is set to the cosine-squared
observable value, subject to maximization. The explicit details will be given in Section 4. Fig. 1 provides an
illustrative overview of the numerical process. A typical phase function and a typical laser pulse, obtained by
an evolutionary optimization, are given for illustration in Fig. 2.

3 Algorithms

On the basis of earlier work on dynamic alignment [23] and due to previous calculations showing that certain
DES variants perform better with respect to other EAs on these problems, we restrict our study to these
state-of-the-art algorithms.

3.1 Evolution Strategies

Evolution Strategies (ES) [3] are canonical evolutionary algorithms for continuous function optimization, due to
their straightforward real-valued encoding, their specific variation operators, as well as to their high performance
on benchmark problems compared to other methods (see, e.g., [1, 24]). A task becomes more suitable for an
ES when the dimensionality of the search space increases. In Evolution Strategies, each individual carries,
apart from the real-valued array of search parameters, a vector of strategy parameters, which determines the
mutation step-size in each direction. Both the search parameters, also referred to as object variables or decision
parameters, as well as the strategy parameters, are optimized.

3.2 Derandomization

Mutative step-size control tends to work well for the adaptation of a global step-size, but tends to fail when it
comes to the individual step-sizes (i.e., variances and covariances of the joint mutation distribution). This is
due to several disruptive effects [25], as well as to the fact that the selection of the strategy parameters setting
is indirect, i.e. the vector of a successful mutation is not used to adapt the step size parameters, but rather the
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Figure 2: [LEFT] A phase function obtained by an evolutionary search (frequency domain). [RIGHT] Given
the spectral phase plotted in the left – thin red line: alignment, quantified in cosine-square (see section 4 for
details); thick black line: intensity of the laser pulse (time domain).

parameters of the distribution that led to this mutation vector. The so-called derandomized mutative step-size
control aims to treat those disruptive effects.

It is important to note that the different DES variants hold different numbers of strategy parameters for
adaptation, and this is a factor in the speed of the optimization course. The different algorithms employ a
number of strategy parameters scaling either linearly or quadratically with the search space dimensionality n,
corresponding to first- or second-order information of the search landscape. The careful reader should
note that we consider here first- or second-order variation information in a stochastic evolutionary algorithm as
equivalent to first- or second-order search information of a deterministic algorithm.

We hereby present briefly two derandomized-ES variants that were in use in our calculations: the DR2
algorithm, which historically was the second derandomized variant to be released, and the CMA-ES, the fourth
variant in the series.

3.3 First-Order DES: The DR2 Algorithm

The second derandomized ES variant [26] aims to accumulate information about the correlation or anti-
correlation of past mutation vectors in order to adapt the global step-size as well as the individual step-sizes by
introducing a quasi-memory vector. This accumulated information allows for omitting the stochastic element in
the adaptation of the strategy parameters - updating the strategy parameters only by means of successful past
mutations, rather than with random steps. This method stores first-order information by means of its O(n)
strategy parameters, where n is the search space dimensionality.

We follow the recommended population size for (1, λ) derandomized ES (see, e.g., [27]), and set λ = 10. By
definition, this strategy does not apply recombination. The mutation step for the kth individual, k = 1 . . . λ,
reads:

~x
(g+1)
k = ~x(g) + δ(g)~δ

(g)
scal~zk ~zk ∼ ~N (0, 1) , (6)

where the evolving strategy parameters δ(g) and ~δ
(g)
scal are the global step-size and the variation directional vector,

respectively. We refer the reader to [26] for the detailed description of the defining update steps.

3.4 Second-Order DES: The (µW , λ) CMA

The (µW , λ)-CMA-ES algorithm (see, e.g., [25, 28]) applies principal component analysis (PCA) to the selected
mutations during the evolution, also referred to as “the evolution path”, for the adaptation of the covariance
matrix of the distribution. The concept of weighted recombination is introduced: applying intermediate multi-
recombination to the best µ out of λ offspring with given weights {wi}µi=1. The result is denoted with 〈~x〉W .

C(g) ∈ R
n×n is the covariance matrix, which is eigen-decomposed as C(g) = B(g)D(g)

(

B(g)D(g)
)T

. By defini-
tion, this method stores second-order information by means of its O(n2) strategy parameters. The characteristic
generation step for the kth individual, k = 1, . . . , λ, reads:

~x
(g+1)
k = 〈~x〉(g)W + σ(g)B(g)D(g)~zk ~zk ∼ ~N (0, 1) (7)
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We refer the reader to [28] for the detailed description of the defining update steps of the strategy parameters.

4 The Alignment Problem: Practical Observation

In this section we provide the reader with the essential information regarding our setup and our experimental
observations for the optimization of dynamic alignment.

4.1 The Optimization: Modus Operandi

In order to assess the performance of the algorithms we have conducted 10 independent runs for each routine
with the goal of optimizing the alignment of a sample of generic diatomic molecules undergoing irradiation by
a shaped femtosecond laser. The calculations were based on the following core mechanisms: (1) (1, 10)-DR2,
(2) (1, 10)-CMA, and (3) (8, 17)-CMA (default settings for n = 80).

We have used the maximum
〈

cos2(θ)
〉

that occurs under field free conditions after the laser pulse, where θ is
the angle between the molecular and the laser polarization axis, as a measure of the alignment. The temperature
of the ensemble is set to T = 100K. The peak Rabi frequency between the two electronic states X and A, that
determines the interaction strength, was ΩXA = 180 · 1012 s−1; the detuning with respect to the intermediate
level was ∆ = 1015 s−1. The FTL width of the pulse was set to TFWHM = 100 fs. With the two-photon

Rabi frequency [29] being Ω2ph =
4πΩ2

XA

∆ , an integration of Ω2ph over the pulse length yields 4.78 two-photon
oscillations; thus the intensity is in the non-perturbative regime.
Since we want to achieve a high degree of alignment with a peak intensity as low as possible, an additional
constraint was introduced that punishes pulses that are too intense. Towards this end, we have used

Ip =

∫

E2(t)Θ(E2(t)− Ithr) dt, (8)

where Θ(x) is the Heaviside step function, so that the fitness function assigned to a pulse shape was

F = maxE(t)

〈

cos2(θ)
〉

− βIp. (9)

By choosing β large enough, Ithr can be used to effectively operate the evolutionary search only on a subset of
pulses whose maximum peak intensity approaches the threshold intensity from below. We have typically used
β = 1; unless otherwise specified, we set the threshold Ithr = 0.36 · IFTL.

4.2 Setup

We hereby provide some information about the experimental setup of the dynamic alignment numerical simu-
lation:

• The cosine-squared alignment yields a real value in the interval [0, 1], subject to maximization, as was
introduced earlier. In the absence of a laser field, an arbitrary measurement yields on average an alignment
value of 0.333, due to the isotropic 3D space. In the presence of a laser field, a random phase typically
obtains alignment values around 0.4. The best alignment result known to us in the given temperature is
≈ 0.7.

• The punishment term, which was introduced earlier in Eq. 8 and Eq. 9, can yield fitness values below the
value of 0.4. The probability of a randomly generated pulse, with no specific parametrization, to get this
punishment is extremely low.

• Every fitness evaluation call requires approximately 35 seconds on a single P4-HT 2.6GHz processor.

• Due to the heavy computational cost of a single fitness evaluation, we are practically limited
in granting function evaluations and obliged to apply minimal settings, as will be described.

4.3 Preliminary Numerical Results

Table 1 summarizes the numerical results of the runs - the averaged alignment value obtained by each opti-
mization routine. Due to the limited number of simulations we do not provide further statistical analysis of
the results. Based on our experience with the problem and the algorithms, the yield differences of Table 1 are
believed to be significant. Fig. 3 presents the best solution found, obtained by the DR2 routine.
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Alignment (1,10)-DR2 (1,10)-CMA (8,17)-CMA

AVG-Fitness 0.6789 0.4676 0.6261

Table 1:
〈

cos2 θ
〉

mean values obtained with the different algorithms over 10 runs.

Figure 3: Best solution attained by the DR2. Thick line: alignment; thin line: intensity profile of the optimized
laser pulse. The solution consists of three main peaks (see labels).

5 The Complete-Basis-Functions Parametrization

We hereby propose a new method for learning a function, based on a representation transformation, which can
also be referred to as parametrization. The so-called Complete-Basis-Functions Parametrization Method was
originally constructed for learning the control function of the dynamic alignment problem, the phase φ(ω), but
is a general method for learning a generic n-variable function. It reduces the dimensionality of the search space
and speeds-up the convergence respectively, as will be explained in detail.

The Appendix provides the reader with the mathematical background on complete-basis functions, and
presents the specific functions that are considered for this study.

Preliminary: A Simple Problem

As we will demonstrate here, finding the expaInversension of a known function by means of a given set of
complete-basis-functions, i.e. finding the coefficients of the functions in this basis, is an easy task for a simple
EA, and in particular for the standard ES. For simplicity, and without loss of generality, let us assume that the
task is to approximate a one-variable function, representing a one-dimensional curve, by means of a trigonometric
series. This task can be generalized to functions of higher dimensions, and by using other expansions.
Consider the expansion coefficients of the cosine and sine functions, {ak}∞k=0, {bk}

∞
k=1 (see Appendix for the

notation in use), as the decision parameters to be optimized in the evolutionary search. As a preliminary task
in this study, we found that the standard ES converged easily and fast to the right coefficients, where this basic
fitting problem was simply defined as an inverse problem (for a general review on such a problem class, see, e.g.,
[30]), with the objective function subject to minimization was the root-mean-square error function between the
original function and its evolving expansion.

Fig. 4 shows the result of learning the triangle function with a standard Evolution Strategy, using only the
first 20 frequencies (n = 40) of a Fourier series as building blocks for a given discretization of N = 100 points
on the curve.

Learning a Function

The idea of spanning a function using a set of complete basis-functions can also be applied for the task of learning
an unknown function, which is represented by a parametrized curve, as in our QC alignment problem. The
inspiration for this method was the physicists’ intuition to the alignment problem, which stated that the control
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Figure 4: Learning the triangle function using the first
20 Fourier frequencies. The plot shows the original
triangle function and its Fourier approximation, whose
curves are parametrized by N = 100 points.

Figure 5: The alpha-test: the fitness of quadratic phase
functions, centered around the central frequency.

function should be periodic. Motivated by this intuition, we started to run experiments in which an ES was
aiming at learning φ(ω) using the harmonic functions as building blocks. Rather than learning the interpolated
values of the control function, the coefficients of the harmonics (Fourier components) were optimized. Following
the success of those experiments, we expanded the method to other sets of complete basis functions, and in
particular to the sets of functions which are introduced in the Appendix: The Legendre Polynomials, the Bessel
Functions, the Hermite Polynomials, and the Chebyshev polynomials.
Assuming that the desired discretization is up to a resolution of N points in the interval, we limit the number of
elements in the expansion series to n, where preferably n≪ N . By that we can achieve a dramatic dimensionality
reduction of the search space, aiming to achieve a convergence speeding-up. The idea then is to apply an
evolutionary search for the n coefficients of the building functions, where a simple transformation is applied for
every fitness evaluation. In practice, the time for additional computation of this transformation is negligible
with respect to the time for objective function evaluation in every real-world problem.

An ES using a Fourier auxiliary function has been proposed in the past, known as the FES method [31].
The FES aims to approximate the fitness landscape, and especially its small attraction basins, using the Fourier
series. However, the careful reader should notice that our method is based on a different principle. It uses
complete-basis functions for the approximation of the decision parameters themselves, rather than the fitness
landscape, which is left untouched. It strongly relies on the fact that these decision parameters represent a
parametrized curve to be approximated/learned.

5.1 Preliminary Calculations

5.1.1 Quadratic Phase Functions – The α-Test

Since we are about to investigate representations of low-order polynomials, we would first like to address the
question whether there exists a trivial extremum which would become a local trap for such phase functions.
Hence, we calculated the fitness of constructed quadratic phase functions, centered around the central frequency.
Explicitly, we considered the following family of phases:

φ(ω)α = α · (ω − ωcentral)
2, (10)

where the continuous parameter α is sampled systematically in the interval [0, 15]. Note that these phases are
constructed over n = 80 function values, and given to the cosine-squared evaluator as before.

The results of this so-called α-test are presented in Fig. 5. Evidently, most of the quadratic phase functions
attain extremely low fitness values, due to large punishment terms, and they never exceed the fitness value of
0.45. This eliminates the existence of a trivial quadratic solution for the problem.

5.1.2 The Initial States Density Test

We set the number of terms in each expansion to Kmax = 40. The following preliminary experiment is meant to
compare the natural initial quality of the different parametrization. We applied a so-called initial states density
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Table 2: Parametrization: Averaged Performance

Routine Direct Fourier Legendre
Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval

(1,10)-DR2 0.6789 2325 0.4494 N.A. 0.6384 629
(1,10)-CMA 0.4676 N.A. 0.4542 N.A. 0.6409 515.1
(µ, λ)-CMA 0.6261 4962.5 0.6171 4475.8 0.6466 194.5

Routine Bessel Hermite Chebyshev
Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval

(1,10)-DR2 0.6299 1390 0.5944 5610 0.4843 N.A.
(1,10)-CMA 0.6229 2212.9 0.6755 271 0.4979 N.A.
(µ, λ)-CMA 0.6232 2719.5 0.6843 118 0.6225 3770.8

Table 3: Parametrization: Summary of Best Results

Parametrization Best Fitness 0.6 Eval Routine Initial States Density

Direct-Param 0.6899 2310 DR2 0.4025± 0.017
Fourier 0.6526 1411 CMA-(7,15) 0.4110± 0.019
Legendre 0.6487 106 CMA-(7,15) 0.3122± 0.075
Bessel 0.6457 61 CMA-(7,15) 0.2217± 0.077
Hermite 0.6866 31 CMA-(7,15) 0.4557± 0.047
Chebyshev 0.6490 1051 CMA-(7,15) 0.4226± 0.023

test, a statistical fitness measurement of the initialized phase functions in the different parametrization. For
each parametrization in use, i.e. the direct 80-dimensional random phase vector, or the random 40-dimensional
coefficient vector for the various polynomials in use, we initialized 1000 phase functions and calculated their
mean fitness and standard deviation. The numerical results are visualized as histograms in Fig. 6-11, providing
the fitness distributions of the random initializations.

5.2 Parametrization: Numerical Results

In this subsection we present the results of the runs of the different parametrization methods - the direct
parametrization versus the polynomial-based methods with Kmax = 40 terms. Our runs were based on the
following core mechanisms: (1) (1, 10)-DR2, (2) (1, 10)-CMA, and (3) (7, 15)/(8, 17)-CMA (default settings for
n = {40, 80}, respectively). The runs were limited to 10, 000 function evaluations. We performed 10 runs per
method.
We consider the performance criteria of the various methods as the following:

• The mean fitness values per method over the 10 runs.

• The averaged number of evaluations per method until the fitness value of 0.6 was reached during the
runs (“fixed target” perspective). We consider the value of 0.6 as the lower bound of the regime of good
solutions.

• The results of the initial states density test, as was introduced earlier: the averaged initial fitness values
per method, with the standard deviation.

We provide a table of results, which consists of the numerical values of the specified performance criteria
per method. It is given as Table 2. Table 3 summarizes the best result obtained per parametrization.

5.3 Analysis and Discussion

An important result that should be noted is that all the runs in the various parametrization have converged
into a highly fit phase function with at least one optimization routine, i.e., all the given complete-basis functions
are capable of spanning a good phase function with Kmax = 40 terms.

Furthermore, we would like to analyze shortly the experimental results of the various parametrization with
respect to the dynamic alignment optimization, as presented in Tables 2 and 3:

1. Initial state. The Hermite parametrization has clearly the most natural initial representation for the
phase function in our given problem, among the various cases, as reflected from the initial states density
test results (Fig. 6-11 and Table 3). Note that the Legendre and the Bessel parametrization have low
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Fitness

Figure 6: Initial states density test for the direct
parametrization.

Fitness

Figure 7: Initial states density test for the Fourier
parametrization.

Fitness

Figure 8: Initial states density test for the Legendre
parametrization.

Fitness

Figure 9: Initial states density test for the Bessel
parametrization.

Fitness

Figure 10: Initial states density test for the Hermite
parametrization.

Fitness

Figure 11: Initial states density test for the Cheby-
shev parametrization.
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initial fitness values, even below the direct parametrization, due to the punishment effect. It should be
stressed that the standard deviations of the different fitness distributions are reasonably low.

2. Fitness values. Some of the polynomial-based parametrization obtained fitness values as high as the
direct parametrization method, and in particular the Hermite parametrization, which obtained the best
results among all the methods. As far as we know, the obtained values are the highest cosine-squared
alignment values which were ever attained. Hence, from the optimization perspective, the proposed
parametrization method does not hamper the feasibility to obtain the maximally-attained yield within
the limit of function evaluations.

3. DR2 vs. CMA. There is a clear trend regarding the two optimization routines. The DR2 obtains
the best results for the direct parametrization, but obviously fails to deliver reasonable results for the
special parametrization. In most cases, the DR2 does not even converge. The (7, 15) CMA-ES, on
the other hand, performs very well with the various polynomial parametrization, and gets fine results
also for the plain parametrization. The (1, 10) CMA-ES is clearly inferior with respect to its rank-µ
weighted-recombined sibling. Our proposed explanation for this trend is the strong correlations between
the polynomials’ coefficients, which make the covariance matrix an essential component for successful
optimization. On the other hand, it seems that the covariance matrix is not an essential component for
the direct parametrization, and may even introduce a barrier, to some degree, to the global search. It is
suggested by Quantum Control Theory that first-order information is sufficient for climbing-up the control
landscape, as will be discussed in Section 8. Moreover, we further explore the performance of the DR2
versus CMA-ES with respect to the direct versus Hermite parametrization in Section 6.

4. Convergence speeding-up. An immediate conclusion from both tables is that the proposed method
achieved a significant speeding-up of the convergence for all the various special parametrization, in com-
parison to the direct parametrization. The Hermite parametrization with (7,15)-CMA is clearly the fastest
routine, and it outperforms the other routines by far. It should be noted that the Legendre as well as the
Bessel parametrization, which have the lowest initial values, manage to compensate for that and reach the
regime of good solutions rather quickly (fitness of 0.6). Typical convergence profiles for Hermite versus
direct parametrization are plotted in Fig. 12.

5. Physics interpretation. Aiming to get some physics insights into the nature of highly-fit phase functions
with respect to the laser shaping problem, we examined the nature of good solutions in the different
parametrization. The idea was to calculate the distributions of the coefficients, and try to identify the
dominance of certain components (frequencies in the Fourier case). Unfortunately, such dominance could
not be determined within the results. The set of optimized phases reveals high complexity, which could not
be tackled. This provides us with motivation to explore a more simple variant of the alignment problem
in Section 6.

6 Optimal Routines versus Parametrization

Here we focus on a simplified variant of the original alignment problem, at zero temperature and with only a
single rotational level at the initial distribution. The motivation for this simplification is to allow studying the
physics nature of the optimal solutions, which would not have been possible for the general case, e.g., tracking
the time-dependent population1 of the rotational levels, given only the ground level at initialization.

6.1 Procedure

We choose to reduce the optimization procedure to the two optimal parametrization, direct and Hermite, subject
to two core mechanisms: (1, 10) strategy for the DR2; (7, 15)-CMA for n = 40 and (8, 17)-CMA for n = 80.
Due to the simplification of this variant, a duration of a single function evaluation was reduced to 6s on a single
processor. The peak Rabi frequency was set here to ΩXA = 160 · 1012 s−1.

6.2 Numerical Results

Table 4 presents the mean values and the standard deviations of the cosine-squared alignment, obtained after
20 runs of 20, 000 function evaluations. The yield differences are believed to be significant also in this case. As
can be observed, the DR2 routine clearly outperforms the CMA in the direct parametrization. The DR2 fails to
obtain high-quality solutions for the Hermite parametrization, whereas the CMA does succeed in this task, with

1The careful reader should note that ’population’ is used here exclusively in the context of quantum mechanics, e.g., populating
quantum levels.
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Figure 12: The speeding-up effect: typical convergence profiles of the (µ, λ) CMA-ES for the Hermite versus
the direct parametrization.

(1, 10) DR2 {(7, 15), (8, 17)} CMA
Plain Parametrization 0.9559± 0.0071 (0.9622) 0.9413± 0.0058 (0.9508)

Hermite Parametrization 0.9501± 0.0043 (0.9570) 0.9583± 0.0026 (0.9618)

Table 4: Maximizing the cosine-squared alignment over 20 runs with 20, 000 function evaluations per run; mean
and std ; the maximal value obtained is in brackets.

highly-satisfying results. Essentially, this is consistent with the previous results on the general problem of finite
temperature. It suggests that the Hermite parametrization introduces strongly correlated decision parameters
with respect to this landscape as well, whereas the direct parametrization can be tackled successfully by a
first-order strategy. We may conclude that the Hermite parametrization is slightly better, but not dramatically
superior on this simplified variant, especially due to the fact that it requires a second-order DES.

6.3 Investigation of Optimal Solutions

An optimal solution is represented by its control function φ (ω), and the electric field respectively, but one can
also examine the resulting revival structure of the molecules. Only due to our simplified variant, i.e.
Jmax
initial = 0 at initialization, it is possible to study the population of the rotational levels as a

function of time. Otherwise, in the general case, all levels are initially populated, and a thermal averaging is
applied. Explicitly, the wavefunction can be expressed as a superposition of those levels,

ψ =
∑

j

a
(t)
j · |j〉 · e−i

Ejt

~ . (11)

The expectation of the cosine-squared alignment (the objective function, or the physical observable) is calculated

directly from these complex amplitudes a
(t)
j , whereas the population of the rotational levels is

∣

∣

∣
a
(t)
j

∣

∣

∣

2

. This

population of rotational levels can be analyzed in a fairly simple technique, known as the Sliding Window
Fourier Transform (SWFT), which provides us with a powerful visual tool. Given the revival structure of an
optimal solution, a sliding time window is Fourier transformed, to produce the frequency picture through the
alignment process. This windowing creates a transformation which is localized in time. Due to the quantization
of the rotational levels, only certain frequencies (or energy levels, respectively) are expected to appear.
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Analysis Results

We applied the SWFT routine to the optimal solutions which were obtained in the various runs. Fig. 15, 16, 17
and 18 visualize the typical population process of the rotational levels for four typical solutions of the different
optimization procedures (2 parametrization times 2 DES variants). The observed quantum energy levels are
indeed as expected from theory.

The results reveal two different conceptual physical structures, which correspond to optimal and sub-optimal
solutions in terms of the physical observable’s yield, i.e., the cosine-squared alignment. The Direct-DR2 as well as
the Hermite-CMA procedures obtain the best solutions, which share the same structure - they are characterized
by the dominant population of the 4th quantum energy level in the SWFT picture. On the other hand, the
Direct-CMA and Hermite-DR2 procedures obtain inferior solutions, which are characterized by a gradually
increasing population of the energy levels.

The original revival structures for two optimal solutions, representing the two conceptual structures, are
given in Fig. 13 and 14. The optimal family of solutions (Fig. 13) presents a dramatic revival structure, with a
typical strong pulse in the train which lies on the boundary of the punished regime (I ≈ 0.36). This pulse seems
to be essential in giving the molecules the right ’kick’, and most likely responsible for the dominant population
of the 4th quantum energy level in the SWFT picture. The sub-optimal family of solutions (Fig. 14) attains
a revival structure with a smooth exponential envelope, and thus has a gradual building-up of the quantum
energy levels in the SWFT picture, respectively. It typically contains a train of medium pulses and lacks a
dominant one.

We would like to emphasize the fact that we obtained the same family of optimal solutions, representing
a single quantum structure, from two different optimization approaches: The first employs a first-order DES
subject to direct pixelation of the control phase, while the other employs a second-order DES subject to Hermite
expansion of the control phase. We claim that this might suggest that the regime of the global optimum has
been reached.

Another Perspective to Optimality – Phasing-Up

The coefficients a
(t)
j are complex numbers, and as such can be expressed in their polar representation:

a
(t)
j = r

(t)
j · eiϕ

(t)
j (12)

To our best understanding, their absolute value is governed by the interaction strength (the peak Rabi frequency
between the two electronic states X and A, ΩXA). Those absolute values are the plotted bars in the SWFT
figures.

We question, however, whether given a certain population - does the optimization routine produce the

optimal set of phases ϕ
(t)
j ? In order to answer this question, a simple optimization procedure was implemented

in the following manner: It accepts the a
(t)
j as input, and aims to optimize the phases ϕ

(t)
j such that the cosine-

squared alignment is maximized. Practically, it uses a subroutine from the general alignment code for the
evaluation, and applies the CMA-ES (Section 3.4) for the tuning of the 10 phases. Note that a single function
evaluation has the duration of ≈ 0.5s.

We considered 50 different cases of highly-fit solutions to the alignment problem (all solutions have cosine-
squared-alignment values in the regime of 0.95) - for each test case 100 independent optimizations were run,
aiming to tune the phases. The experimental results are clear and sharp. They are presented at two levels:

1. In all 100 runs for all 50 test-cases - the best solution has always synchronized phases. There are
different phase values per run, but it does not make a difference for the cosine-squared alignment, as long
as the populated levels hold that same phase value. Explicitly, the Sigma-RMS of the phases is calculated:

∆ϕoptimal = 0.0117

2. The 50 test-cases, as originally obtained by the original optimization prior to this optimization procedure,
held phases which are not far from being synchronized,

∆ϕDR2 = 0.0566

and indeed, the optimizations did not improve the cosine-squared alignment dramatically: always less
than 1% improvement.

We consider this a very strong result - the evolutionary optimization routine managed to tackle the fine-
tuning of the quantum control problem, behind the complex transformations and the so-called Schrödinger
black-box.
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Alignment and Revival Structure of two obtained solutions (Fig. 13 and 14). Thin red line: alignment; thick
black line: intensity of the laser pulse.

Figure 13: A typical optimal solution, obtained by the
DR2-plain; Alignment yield: < cos2 (θ) >= 0.9622.

Figure 14: A typical sub-optimal solution, obtained
by the CMA-plain: A smooth exponential envelope is
observed; Alignment yield: < cos2 (θ) >= 0.9505.

Each of the SWFT figures (Fig. 15 - 18) represents a Fourier transform applied to the revival structures of the
optimal solutions (the thin-red alignment curves of Fig. 13-14). The values are log-scaled, and represent how
high the rotational levels of the molecules are populated as a function of time. Thus, an exponential envelope
(Fig. 14) is represented by a gradual building-up of frequencies (Fig. 16). Note that the quality of the laser
pulse cannot be measured in those plots.

Figure 15: DR2 with plain-parametrization: The 4th

rotational level is mostly populated after the interac-
tion.

Figure 16: CMA with plain-parametrization: All five
first rotational levels are populated gradually after the
interaction.

Figure 17: DR2 with Hermite-parametrization: The
four first rotational levels are populated gradually af-
ter the interaction.

Figure 18: CMA with plain-parametrization: 4th rota-
tional level is mostly populated after the interaction.

14



Figure 19: Best, mean and worst cosine-squared align-
ment values obtained by the DR2 for each parametriza-
tion, over 10 runs of 20, 000 function evaluations each.

Figure 20: A typical DR2 evolution run for n = 100,
with 20, 000 function evaluations. Successful learning
is observed after ≈ 5, 000 evaluations.

Figure 21: A typical DR2 evolution run for n = 700,
with 20, 000 function evaluations. No successful learn-
ing is observed.

Figure 22: DR2 evolution run, for n = 1000, with
100, 000 function evaluations. The best cosine-squared
alignment value found was f∗ = 0.9583.

7 Scalability

In this section we aim at exploring the scalability of the alignment problem with respect to a specific ES variant
(DR2). We are interested in studying the trade-off between the resolution of the control function, which allows
fine-tuning of the electric field, to the success-rate of the evolutionary learning process, subject to a fixed number
of function evaluations. We choose to conduct a scalability test on the simplified variant of zero-temperature.

We apply the DR2 algorithm to the optimization task in the following manner - 10 runs per discretization,
with n = 80, 100, 120, ..., 700, as well as to the cases n = 800, 900, 1000. Each run is limited to 20, 000 function
evaluations. Fig. 19 presents the numerical results of these calculations. The best, mean and worst fitness
values obtained by the DR2, after 20, 000 function evaluations, for each discretization, are plotted.

As can be observed, the best fitness value is attained for n = 80, 100; as the dimension n increases, there
seems to be a weak trend of fitness values decrease, but the DR2 still manages to find optimal solution in the
regime of 0.94 even for n = 400. A typical evolution run for n = 100 is given as Fig. 20. As can be observed
from this plot, a successful learning is obtained after ≈ 5, 000 function evaluations. In higher dimensions, i.e.
n ≥ 500, the DR2 does not manage to tackle the problem within the limited number of function evaluations. A
typical run for n = 700 is given as Fig. 21.

Granting Additional Function Evaluations Given the numerical results of the previous section, we were
interested in the question whether the fixed number of function evaluations limits the search and does not allow
a successful learning of the decision parameters and a convergence into a good solution. We have conducted
a series of runs, now limited to 100, 000 function evaluations, for the extreme case of n = 1000. Surprisingly

15



to some extent, we found that some of the runs did manage to converge successfully into fine solutions of
high fitness values. In particular, we would like to mention a run which found a solution with cosine-squared
alignment value of f∗ = 0.9583, a value which is close to the highest value known to us for this variant of the
problem. The plot of that specific evolution run is given as Fig. 22. This plot reveals that the DR2 manages
to ’take-off’ into a convergence pathway only after ≈ 50, 000 function evaluations, and then it needs further
30, 000 function evaluations to reach saturation.

This numerical result indicates that the learning task of the decision parameters in this problem is still
feasible in higher dimensions, as long as the granted number of function evaluations is sufficiently increased.
Clearly, the specific Evolution Strategy in use has tackled successfully the 1000-dimensional problem from the
optimization perspective.

However, from the physics perspective, such a high-resolution parametrization does not seem
to pay-off, as far as the cosine-squared observable is concerned, and there seems to be no justifi-
cation for allowing higher discretization of the control function.

8 Conclusions and Outlook

We would like to briefly summarize this manuscript. We have examined the application of specific ES variants
to a specific use-case representing computationally expensive QC simulations, namely the molecular alignment
problem. To this end, we have numerically optimized the alignment of a thermal ensemble of rigid rotors by
applying pulse shaping techniques resembling the common experimental procedure of femtosecond pulse shaping
(QCE). In a comparison of the different variants, we observed that a first-order technique, the so-called DR2
algorithm, outperformed the CMA-ES, which is a second-order technique. We offer the following explanation.
QCT proves [32] that “given a controllable theoretical quantum system, there is always a trap-free pathway up to
the top of the control landscape from any location, allowing locating an optimal control with first-order (gradient)
information”. Even though this theorem is valid for unconstrained theoretical QC landscapes, it may as well
suggest that first-order information is sufficient to optimize other QC landscapes.

We developed a general method for the learning task of any parametrized curve by means of complete-
basis functions. We applied a couple of preliminary tests with respect to the application of the method to the
alignment problem. The so-called α-test has succeeded in justifying this method and did eliminate the possibility
of convergence into a trivial attractor. The initial states density test contributed a perspective of the nature of
the various parametrization with respect to the given objective function. By performing a series of numerical
simulations, with a fixed number of coefficients, we managed to show that our method qualified as a robust
optimization method, and in particular achieved a significant convergence speeding-up for the given problem.
The obtained solutions were at least as good as any other solutions known to us, but were achieved faster. From
the algorithmic perspective, they required a second-order optimization routine, such as the CMA-ES.

Finally, we considered a simplified variant of the original problem, in order to further investigate the nature
of optimal solutions. By applying two optimization routines, subject to two different parametrization, two
typical physics structures were revealed, corresponding to an optimal and sub-optimal sets of solutions. The
combination of algorithms and parametrization resulted in a sharper observation of optimality. This confirmed
the multi-modality of the search space, as predicted by theory [33] and provided us with strong physics intuition
with respect to the shape of optimal pulses. Our new observation suggests that the regime of optimal solutions
has been found.

The combination of noise-free numerical modeling with specific EAs and parametrization accomplished a
successful interdisciplinary study with fruitful results in both sides. The absence of noise was a blessing in this
context, and we believe that it resulted an important physical view of QCT with some QCE characteristics.
Upon transferring these algorithms to the laboratory for the sake of experimental optimization of QC systems
[34], it is likely that additional study of robustness to noise will be required.

Appendix: Complete-Basis Functions

Here is a brief summary of the fundamental mathematical concepts behind the Complete-Basis-Functions
Parametrization, as presented in section 5. This part is mainly based on Abramowitz [35] and Kaplan [36].
Let f (x) be given in the interval a ≤ x ≤ b, and let

ξ1 (x) , ξ2 (x) , . . . , ξk (x) , . . . (13)

be functions which are all piecewise continuous in this interval.
The set {ξk (x)}∞k=1 is called complete if it can span any piecewise continuous function f (x), e.g.,

f (x) =

∞
∑

k=1

ckξk (x) , (14)
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where the coefficients ck are given by:

ck =
1

Bk

∫ b

a

f (x) ξk (x) dx, Bk =

∫ b

a

[ξk (x)]
2
dx (15)

The convergence is guaranteed by the so-called completeness theorem. Explicitly, the series

Rm =

∫ b

a

(

f(x)−
m
∑

k=1

ckξk (x)

)2

dx =

∫ b

a

(f(x)− Sm(x))
2
dx (16)

converges to zero for sufficiently large m:
lim

m→∞
Rm = 0, (17)

where we denoted the sequence of partial sums as Sm(x):

Sm(x) =

m
∑

k=1

ckξk (x) (18)

By definition, the convergence of the series of functions is equivalent to the convergence of Sm(x) to f(x):

lim
m→∞

Sm(x) = f(x) (19)

The Fourier (Trigonometric) Series

A trigonometric series is an expansion of a periodic function in terms of a sum of sines and cosines, making
use of the orthogonality property of the harmonic functions. Without loss of generality, let us consider from
now on the interval [0, L]. Let f(x) be a single-valued function defined on that interval, then its trigonometric
series or trigonometric expansion is given by:

f̃(x) =
1

2
a0 +

∞
∑

k=1

ak cos

(

2πk

L
· x
)

+
∞
∑

k=1

bk sin

(

2πk

L
· x
)

(20)

If the coefficients ak and bk satisfy certain conditions, then the series is called a Fourier series.
If f(x) is periodic with period L, and has continuous first and second derivatives for all x in the interval, it is
guaranteed that the trigonometric series of f(x) will converge uniformly to f(x) for all x; This is referred to as
satisfying the Dirichlet conditions. We shall refer in this study to the trigonometric series as the Fourier series.

Other Sets of Functions

If one is indeed interested in periodic functions, there is no natural alternative but using the trigonometric
series. However, if one is concerned with other representations of a general function over a given interval, a
great variety of other sets of functions is available, e.g.:

• Legendre polynomials, Pk(x):

Pk(x) =
(2k − 1)(2k − 3) · · · 1

k!

{

xk − k(k − 1)

2(k − 1)
xk−2+

+
k(k − 1)(k − 2)(k − 3)

2 · 4(2k − 1)(2k − 3)
xk−4 − · · ·

}
(21)

which can also be defined via Rodrigues’ formula:

P0(x) = 1 Pk(x) =
1

2kk!

dk

dxk
(

x2 − 1
)k
, k = 1, 2, . . . (22)

If f(x) satisfies the Dirichlet conditions mentioned earlier, then there will exist a Legendre series expansion
for it in the interval −1 < x < 1.
For illustration, the first 10 Legendre polynomials are plotted in Fig. 23.

• Bessel Function of the First Kind and of Order l, Jl(x):

Jl(x) =

∞
∑

k=0

(−1)
k
xl+2k

2l+2k · k! · Γ (l + k + 1)
(23)

with Γ(α) as the Gamma Function. Given a fixed l ≥ 0, the functions {√xJl (λlkx)}∞k=1 form an orthogonal
complete system over the interval 0 ≤ x ≤ 1.
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Figure 23: The First 10 Legendre Polynomials.

• Hermite polynomials, Hk(x):

Hk(x) = (−1)
k
exp

{

x2
} dk

dxk
(

exp
{

−x2
})

, k = 0, 1, . . . (24)

The Hermite polynomials form a complete set of functions over the infinite interval −∞ < x < ∞, with
respect to the weight function exp

(

− 1
2x

2
)

.

• Chebyshev polynomials of the First Kind , Tk(x):

Tk(x) =
k

2

⌊k/2⌋
∑

r=0

(−1)r

k − r

(

k−r
r

)

(2x)k−2r , k = 0, 1, . . . (25)

The Chebyshev polynomials of the First Kind form a complete set of functions over the interval [−1, 1]
with respect to the weight function 1√

1−x2
.

Higher Dimensions

An expansion by means of a complete set of functions can be generalized for higher dimensions. For illustration,
let us consider the two-dimensional case of the trigonometric series. The functions cos(2πkL · x) · cos(2πlL · y),
sin(2πkL ·x) ·cos(2πlL ·y), cos(2πkL ·x) ·sin(2πlL ·y), and sin(2πkL ·x) ·sin(2πlL ·y) form an orthonormal complete system
of functions in the box [(0, 0), (0, L), (L, 0), (L,L)]. Given a function in that domain, f(x, y), its expansion can
then be written in the form:

f(x, y) =

∞
∑

k=0

∞
∑

l=0

λkl ·
{

akl cos(
2πk

L
x) cos(

2πl

L
y)+

+bkl sin(
2πk

L
x) cos(

2πl

L
y) + ckl cos(

2πk

L
x) sin(

2πl

L
y)+

+dkl sin(
2πk

L
x) sin(

2πl

L
y)

}

(26)

Corollary

An infinite series of complete basis functions converges to any “reasonably well behaving” function. Hence, it
is straightforward to approximate a given function with a finite series of those functions, i.e., by cutting its tail
from a certain point. In principle, the sum Sm(x) (Eq. 18) can always be found to a desired degree of accuracy
by adding up enough terms of the series. For practical applications, the corollary is that every function can be
approximated using a series of complete basis functions, to whatever desired or practical accuracy. Moreover,
this corollary can be easily generalized to any desired dimension.
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