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Motivation and Introduction

Domain: Integer Evolution Strategies (IESs)
We are interested in IESs for their (i) intrinsic mixed-integer
capabilities, (ii) well-developed self-adaptation mechanisms, and
(iii) high efficacy in handling unbounded search spaces.
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Motivation and Introduction

status & questions
Existing IESs work well, usually by applying the Truncated Normal
(TN) distribution in their mutation operator:

• But no questions asked on the mutations’ behavior.
• Rudolph [1994] identified the Double-Geometric (DG) distribution

as a promising tool for uncorrelated integer mutations.
• Questions: (i) Are we able to well-define correlated DG-driven

mutations, and if so, (ii) will they be beneficial?
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Motivation and Introduction

preliminaries
TN:
univariate – z0 ∼ N

(
0, σ2

)
=⇒ z = int (z0)

multivariate – ~z0 ∼ N
(
~0,C

)
=⇒ ~z = int (~z0)

DG:
univariate – gi ∼ G (0, p) (i = 1, 2) =⇒ z = (g1 − g2)
multivariate – i.i.d. of the above: zj = G (0, pj)− G (0, pj) j = 1 . . . n
correlated multivariate – unknown
The DG distribution is controlled by the `1-norm-driven mean step-size,
S = E [‖~z‖1] =

∑nz
i=1 E [|zi|1] (due to the stochastic independence):

p = 1− S/nz√(
1 + (S/nz)2

)
+ 1

⇐⇒ S = nz ·
2(1− p)
p(2− p) .
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Problem Formulation and Methodology

methodology
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Problem Formulation and Methodology

ies::genUncorrelatedMutation(~σ, type)
n←− len (~σ) , ~z := ~0 ∈ Rn
if type==DG then

for i = 1, . . . , n do
pi ←− 1− σi/n√

(1+(σi/n)2)+1
zi ←− G (0, pi)

end
else

/* default TN */
for i = 1, . . . , n do

zi ←− σi · N (0, 1)
end

end
return {~z}
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Problem Formulation and Methodology

Schwefel’s rotations (i)

We capitalize on Schwefel’s definition of the standard ES, according to
which the covariance information is stored by means of the
n-dimensional variances’ vector ~σ as well as the n(n− 1)/2-dimensional
vector of rotational angles ~α.

The transformation of a covariance element cij into a rotational angle
αij (where cii ≡ σ2

i ) provides a useful relationship for decision variables
i and j:

αij = 1
2 arctan

(
2cij

σ2
i − σ2

j

)
,

where αij = 0 whenever no correlation exists.
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Problem Formulation and Methodology

Schwefel’s rotations (ii)
The realization of the correlated mutation instance ~zc is achieved by a
sequence of n(n− 1)/2 rotations using the operator R(θ) := (rk`)

~zc =

n−1∏
i=1

n∏
j=i+1

R(αij)

 · ~zu . (1)

R’s matrix form is identical to the unity, except for 4 elements:

rkk = r`` = cos(αk`), rk` = −r`k = − sin(αk`).

Rudolph [1992] verified the validity of this representation.

rotate (~z, ~α)
for j = 1, . . . , n · (n− 1)/2 do
~z ←− R(αj)~z

end
return {~z}
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Problem Formulation and Methodology

ies::corrMutate(~x, ~σ, ~α, n, type)
Ng ← N (0, 1) , τg ← 1√

2·n , τ` ←
1√

2·
√
n

for i = 1, . . . , n do
σ′i ←− σi · exp {τg · Ng + τ` · Ni (0, 1)}

end
for j = 1, . . . , n · (n− 1)/2 do

α′j ←− αj + β · Nj (0, 1)
end
~zu ←− genUncorrelatedMutation (~σ′, type)
~z ←− round (rotate (~zu, ~α′))
if type==DG then

~zg ←− genUncorrelatedMutation (~σ′, type)
~z′g ←− round (rotate (~zg, ~α′))
~z ←− ~z − ~z′g /* difference of two geometric samples */

end
~x′ ←− ~x+ ~z
return {~x′, ~σ′, ~α′}
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Problem Formulation and Methodology

(µ, λ) Integer Evolution Strategy
t← 0
P (t)← randIntUniform(µ) /* forming µ individuals, each
with decision variables ~x + strategy parameters {~σ, ~α} */

evaluate(P (t))
repeat

P ′(t)← recombine(P (t)) /* forming λ offspring by
repeatedly drawing λ

2 pairs of parents at random */
P ′′(t)← mutate(P ′(t), type) /* calling corrMutate,
which also self-adapts the strategy parameters */

evaluate(P ′′(t))
P (t+ 1)← select(P ′′(t)) /* deterministically selecting
the top µ individuals post-sorting */
t← t+ 1

until evaluation budget is exhausted
return { best individual found }
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Problem Formulation and Methodology

2D populations

We present heatmaps of both TN- and DG-based 2D sampled
populations of size 104 per σ1 = 1.0 and σ2 = 3.0: uncorrelated
(diagonal), correlated (nondiagonal) with c12 = −0.8, and with
c12 = 1.2 (assuming a structure of the form [σ2

1, c12; c12, σ
2
2]).

Since the simulation is governed by the Normal distribution’s
parameters, the DG’s step-size can be approximated as

Si ≈
∫ ∞
−∞
|z| · pdf(z) dz = σi ·

√
2
π
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Problem Formulation and Methodology

2D visualzation
TN:

DG:
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Results

numerical observations
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Results

preliminary: (1+1)-IES on the Integer Sphere

minimize~x ~xT~x
subject to: ~x ∈ Zn

We utilize Rechenberg’s renowned 1/5th success-rule for the
step-size adaptation, in play with either the TN or DG mutation
distributions, and compare six strategies:

1 (1+1)-DG
2 uncorrelatedDG
3 correlatedDG
4 (1+1)-TN
5 uncorrelatedTN
6 correlatedTN
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Results

six IESs over the 80D Integer Sphere
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Results

unbounded integer quadratic optimization problems

We seek numerical validation to our hypotheses by considering
unbounded quadratic integer optimization problems of the following
class:

minimize~x 1
c ·
[(
~x− ~ξ0

)T
H
(
~x− ~ξ0

)]
subject to: ~x ∈ Zn,

where the Hessian matrix H, its parametric condition number c and
the location vector ~ξ0 completely define a problem instance.
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Results

IQP instances
We consider 4 n× n Hessian matrices to represent two separable (i.e.,
diagonal forms) and two nonseparable (i.e., nondiagonal forms)
problems:
H-1 Discus: (Hdisc)11 = c, (Hdisc)ii = 1 i = 2, . . . , n;
H-2 Cigar: (Hcigar)11 = 1, (Hcigar)ii = c i = 2, . . . , n;
H-3 Rotated Ellipse (RotEllipse):

HRE = OHellipseO−1

where O is rotation by ≈ π
4 radians in the plane spanned by

(1, 0, 1, 0, . . .)T and (0, 1, 0, 1, . . .)T ;
H-4 Hadamard Ellipse (HadEllipse):

HHE = SHellipseS−1

where the rotation constitutes the normalized Hadamard matrix,
S := Hadamard(n)/

√
n.

We consider 6 levels of conditioning, c ∈
{
10, 102, . . . , 106}, which yield

altogether 24 problem instances per dimensionality.
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Results

fixed-budget gallery per 64D
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Results

overall performance when considering also the cmaIH

32D 64D 128D

The ranking of the five IESs (including the cmaIH) using radar charts
across the 24 problem instances (serving as nodes). The performance is
ranked using fixed-budget analyses (with “rank-1” being the winner).
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Results

pairwise numerical comparisons amongst the four IESs

64D: Separable 64D: Nonseparable

uncorrDG dominates the separable subset (corrDG is second);
corrDG dominates the nonseparable subset (uncorrDG is second) –
consistently across dimensions (see 32D and 128D in the paper).
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Discussion

discussion
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Discussion

summary

• We proposed a procedure for generating correlated DG mutations.
• We showed that the (1 + 1)-IES with DG mutations worked well

with the 1/5th success-rule on the unconstrained integer Sphere
model without any adjustments, unlike its TN-based counterpart.
• Concerning the IQP test-suite:

• DG-based IESs always outperform TN-based IESs over the tested
suite.

• Correlated DG mutations are beneficial per the tested nonseparable
IQP problems.
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Discussion

take-home messages

• The DG distribution should be further investigated:
• to the adaptation framework of the derandomized CMA-ES;
• extended analysis over a wider range of model-landscapes;
• statistical properties of the correlated DG, e.g., entropy, might

reveal important insights
• What mechanism enables the cmaIH to outperform the other IESs?

We now understand that Gaussianity does not give an advantage.
We speculate that the advanced step-size control mechanism is
responsible for that.
• Coming-up at FOGA’25: a fundamental study with a rigorous

investigation of the two mutation distributions – Shir & Emmerich,
“Foundations of Correlated Mutations for Integer Programming”,
https://doi.org/10.1145/3729878.3746698

Shir-Emmerich IESs’ Correlated Geometric Mutations GECCO’25: AABOH 23 / 24

https://doi.org/10.1145/3729878.3746698


Discussion

Ofer Shir acknowledges the Faculty of Biology at the Technion - Israel
Institute of Technology for hosting him during his sabbatical.

gracias

Shir-Emmerich IESs’ Correlated Geometric Mutations GECCO’25: AABOH 24 / 24


	Motivation and Introduction
	Problem Formulation and Methodology
	Results
	Discussion

