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Introduction

ESs’ statistical landscape learning
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Introduction

the classical hypothesis C → H−1

• Open question since the early development of ESs; widely
discussed [Rudolph1992]

• Sheer amount of empirical evidence for this relation, in addition to
extensive branding “C=inv(H)” made this hypothesis a practical
postulate throughout the years

• Recent proofs published, yet limited to Derandomization (or
Natural Gradient); they exercise IGO [Akimoto2012, Beyer2014]

• We seek the fundamentals of this learning capability and consider
a theoretical model – which is not likely to reflect an everyday’s
heuristic – e.g., C’s eigenvalues are Ω

(
1/λ2

)
and λ tends to infinity
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Introduction

so why bother?

• IGO is an elephant gun – can we target an equivalent result in
more fundamental ways? (David’s stone+sling to knock Goliath
down)

• “Going back to basics” using first principles of probability theory
and calculus on a basic ES model

• Mathematically beautiful, but may also serve as a tool elsewhere
in the future

• This work concerns the absolutely continuous case, but any theory
guy should find it interesting :-)
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Introduction Model

statistical sampling by (1, λ)-selection

1 t← 0
2 S ← ∅
3 repeat
4 for k ← 1 to λ do

5 ~x
(t+1)
k ← ~x0 + ~zk, ~zk ∼ N (~0, I)

6 J
(t+1)
k ← evaluate

(
~x

(t+1)
k

)
7 end

8 mt+1 ← arg min

({
J

(t+1)
ı

}λ
ı=1

)
9 S ← S ∪

{
~x

(t+1)
mt+1

}
10 t← t+ 1

11 until t ≥ Niter

output: Cstat =statCovariance(S)
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Introduction Model

first results [FOGA’17]

quadratic approximation; optimum’s vicinity

J (~x) = J (~x− ~x∗) = ~xT · H · ~x (1)

main results
i. Rigorous formulation of the covariance matrix C over ESs’ selected
individuals (“winners”)
ii. The covariance matrix and the Hessian commute and are
simultaneously diagonalizable for any λ for (µ, λ)-selection
iii. For every invertible H and λ ∈ N, there exists a constant
α = α(H, λ) > 0 such that

lim
λ→∞

αCH = I.
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Introduction Model

current model

general quadratic approximation

J (~x) = (~x− ~x∗)T · H · (~x− ~x∗) (2)

truncation selection (“winners”)

~y = arg min {J(~x1), J(~x2), . . . , J(~xλ)} (3)

ω = J(~y) = min {J(~x1), J(~x2), . . . , J(~xλ)} (4)
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The Analytical Covariance Matrix

the covariance matrix
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The Analytical Covariance Matrix

the analytical form

The expectation vector of the winner is defined by its ith element:

Ei =

∫
xiPDF~y (~x) d~x , (5)

Cij =

∫
(xi − Ei)(xj − Ej)PDF~y (~x) d~x . (6)

PDF~y (~x) is an n-dimensional density function characterizing
the winning decision variables about the optimum.

One of the primary goals is to fully understand this expression and
utilize it.
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The Analytical Covariance Matrix A Single Winner: (1, λ)-Selection

winners’ density in (1, λ)-selection

Proposition 0

PDF~y (~x) = PDFω (J (~x)) · PDF~z (~x)

PDFψ (J (~x))
(7)

• PDFω : density of the winning value ω

• PDF~z : density for generating an individual by mutation

• PDFψ : density of the objective function values (Eqs. 13 or 16)

sketch: consider the distribution of [~y;ω] on Rn+1

i. sample {J1, . . . , Jλ} according to PDFψ independently
ii. sample {~x1, . . . , ~xλ} conditioned on J1, . . . , Jλ independently
iii. ω is set to the minimum J`, and ~y is set to ~x`
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The Analytical Covariance Matrix (µ, λ)-Truncation Selection

(µ, λ)-selection

• J1:λ ≤ J2:λ ≤ . . . ≤ Jλ:λ are the order statistics obtained by sorting
the objective function values.

• ω1:λ, . . . , ωµ:λ are the first µ values from this list.

• ~y1:λ, . . . , ~yµ:λ are their corresponding vectors.

To study the covariance in this case, we consider the pairwise density
of the kth-degree and `th-degree winners (` > k):

PDF~yk:λ,~y`:λ (~xk, ~x`) = PDFωk:λ,ω`:λ (J (~xk) , J (~x`))×

×
(

PDF~z (~xk)

PDFψ (J (~xk))

)
·
(

PDF~z (~x`)

PDFψ (J (~x`))

)
. (8)
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The Inverse Relation

the inverse relation
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The Inverse Relation

winning values’ density & proposition 1

For simplicity, we consider (1, λ)-selection.

CDFω (v) = 1− (1− CDFψ (v))λ (9)

PDFω (v) = λ · (1− CDFψ (v))λ−1 · PDFψ (v) (10)

Proposition 1:
For every invertible H and λ ∈ N, there exists a constant
α = α(H, λ) > 0 such that

lim
λ→∞

αCH = I.
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The Inverse Relation Proving limλ→∞ αCH = I

intuition for proving proposition 1

We first target a diagonal H

For a large λ, the winner ~y is close to the optimum, which in turn
implies that (CH)ii does not actually depend on i.

For the general case, we ought to show that both H and C are
diagonalizable in the same base under the same limit conditions (not
shown here).
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The Inverse Relation Proving limλ→∞ αCH = I

proof sketch for proposition 1

i. firstly, assume H is diagonal and apply change of variables
ri =

√
∆i · (xi − x∗i )

ii. Ei − x∗i = cH√
∆i

∫
riλ(1− CDFψ(‖~r‖2))λ−1 exp

(
−Ĵ(~r)

)
d~r

iii. show that |Ei − x∗i | ≤ ε1
√
Cii

iv. bound the off-diagonal terms Cij ≤ ε2
√
CiiCjj

v. show that α∆iCii ≥ 1− ε3 and α∆iCii ≤ 1 + ε4 (ε3 and ε4 tend to
zero as λ tends to infinity)

vi. secondly, for a non-diagonal H,

lim
λ→∞

αCH − I = lim
λ→∞

U (αT D − I)U−1 = 0
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Discussion

discussion

i. C and H commute (for any λ near the optimum, for λ→∞
elsewhere).
this learning capability stems only from two components:
(1) isotropic Gaussian mutations, and (2) rank-based selection.
* learning the landscape is an inherent property of classical ESs.
** it does not require Derandomization (adaptation) nor IGO (proofs)

ii. limλ→∞ αCH = I ; this approximation has two parts:
(1) guaranteeing that Cstat is pointwise ε-close to C with confidence
1− δ. the eigenvalues of C are at least Ω(1/λ2); for Cstat to
meaningfully approach C it requires ε� 1/λ2.
=⇒ number of samples required for this part is polynomial in
λ, 1/ε, ln(n) and ln(1/δ).
(2) guaranteeing that C is pointwise ε-close to αH−1 , α (λ,H) > 0.
=⇒ upper bound on the number of samples required for this part
depends on ε, λ and on the spectrum of H.
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Discussion

limit distributions of order statistics

In order to calculate Cij when λ tends to infinity, it is possible to

approximate PDFω (J (~x)), by considering Lλ (v) = 1− (1− CDFψ (v))λ

at limλ−→∞ Lλ (v):

theorem [Fisher-Tippett]
the generalized extreme value distributions (GEVD) are the only
non-degenerate family of distributions satisfying this limit:

Lκ (v;κ1, κ2, κ3) = 1− exp

{
−
[
1 + κ3

(
v − κ1

κ2

)]1/κ3
}

(11)

=⇒ CDFψ belongs to Weibull

This tool is hardly ever exercised amongst our scholars; Rudolph
utilized it in his book [Rudolph1997].

Shir Fundamentals of ESs’ Learning Dagstuhl 17191 18 / 21



Discussion

limit distributions of order statistics

In order to calculate Cij when λ tends to infinity, it is possible to

approximate PDFω (J (~x)), by considering Lλ (v) = 1− (1− CDFψ (v))λ

at limλ−→∞ Lλ (v):
theorem [Fisher-Tippett]
the generalized extreme value distributions (GEVD) are the only
non-degenerate family of distributions satisfying this limit:

Lκ (v;κ1, κ2, κ3) = 1− exp

{
−
[
1 + κ3

(
v − κ1

κ2

)]1/κ3
}

(11)

=⇒ CDFψ belongs to Weibull

This tool is hardly ever exercised amongst our scholars; Rudolph
utilized it in his book [Rudolph1997].

Shir Fundamentals of ESs’ Learning Dagstuhl 17191 18 / 21



Discussion

limit distributions of order statistics

In order to calculate Cij when λ tends to infinity, it is possible to

approximate PDFω (J (~x)), by considering Lλ (v) = 1− (1− CDFψ (v))λ

at limλ−→∞ Lλ (v):
theorem [Fisher-Tippett]
the generalized extreme value distributions (GEVD) are the only
non-degenerate family of distributions satisfying this limit:

Lκ (v;κ1, κ2, κ3) = 1− exp

{
−
[
1 + κ3

(
v − κ1

κ2

)]1/κ3
}

(11)

=⇒ CDFψ belongs to Weibull

This tool is hardly ever exercised amongst our scholars; Rudolph
utilized it in his book [Rudolph1997].

Shir Fundamentals of ESs’ Learning Dagstuhl 17191 18 / 21



Discussion

Acknowledgements to Jonathan Roslund.
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Backup Slides

probability functions

isotropic case: H = I
ψ = J(~z) is a random variable obeying the χ2-distribution:

Fχ2 (ψ) =
1

2n/2Γ (n/2)

∫ ψ

0
t
n
2
−1 exp

(
− t

2

)
dt (12)

fχ2 (ψ) =
1

2n/2Γ (n/2)
ψn/2−1 exp

(
−ψ

2

)
(13)

general case: H = UDU−1, D = diag [∆1, . . . ,∆n]

FHχ2(ψ) =
∫∞

0
2
π

sin tψ
2

t cos
(
−tψ + 1

2

∑n
j=1 tan−1 2∆jt

)
×

n∏
j=1

(
1 + ∆2

j t
2
)− 1

4 dt,
(14)
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Backup Slides

approximation for the general case

Fτχ2 (ψ) =
Υη

Γ (η)

∫ ψ

0
tη−1 exp (−Υt) dt (15)

fτχ2 (ψ) =
Υη

Γ (η)
ψη−1 exp (−Υψ) (16)

Υ and η account for the first two moments of ~zTH~z:

Υ =
1

2

∑n
i=1 ∆i∑n
i=1 ∆2

i

, η =
1

2

(
∑n

i=1 ∆i)
2∑n

i=1 ∆2
i

(17)

Accuracy depends on the eigenvalues’ {∆i} standard deviation.
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