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Experimental Learning/Optimization in The Sciences
algorithmic design, efficiency,
robustness to uncertainty/noise

Simulation-Based Optimization
motivate refinements, mark limits,
scientific programming, design/architecture

Domain-Specific Mathematical/Statistical Analysis
back-to-basics in a new domain

Learning/Optimization: Problem Formulation

: Disprove
motivate research

presumptions

Theoretical Foundations to Heuristic Search
rigorous theoretical basis



Motivation: Scientific Discovery as a |
Combinatorial Optimization Problem |

= An underlying problem shared by scientists ‘“\W
is to achieve optimal behavior of their systems'l'wwp :
and arrive at new discoveries while searching
over a vast array of parameters
(decision variables).
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" This is commonly visualized in terms of a %~ | s

‘landscape’, in which a candidate solution

is mapped onto a ‘position’,its quality onto
an ‘altitude’.

" The task is translated into efficiently
navigating within this search-space,
which scales exponentially with the
number of variables.
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Kell, D.B., Scientific discovery as a combinatorial optimisation problem: How best to navigate

the landscape of possible experiments? BioEssays, 2012. 34(3): p. 236-244.
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= Hessian determination about the optimum is very important:

Sensitivity analysis: assessing robustness of attained solutions
*= Reduced dimensional form for the optimal control basis

= Mechanism investigation

= |s it possible to exploit derandomized search information for
reduced-cost Hessian (no derivatives)?
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= FOCAL: Forced Optimal Covariance Adaptive Learning

= |dea: Employ CMA-ES, force exploration about the global maximum,
and invert the attained covariance matrix
Natural Computing = evolutionary pressure + statistical learning

= Shift the focus on canonical global optimization to landscape learning

= Several modification to the default CMA-ES:

= Forcing a finite-size step, especially upon convergence to optimum
® Covariance learning rate is enhanced

* Greedy selection pressure strives for the least yield declines, and
pushes toward learning of the optimal mutation distribution



(a) Retrieving the Hessian by FOCAL for rank-deficient atomic Rubidium
(b) 5 most important Hessian eigenvectors; Physical form corroborated
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Shir, O.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape Hessian:
Forced optimal covariance adaptive learning. Physical Review E 89(6) (2014) 063306.



Research question: What is the relation between the statistically-learned
covariance matrix and the landscape Hessian if a single ES winner is
selected in each iteration assuming isotropic Gaussian samples?

1 t+0
We distinguish between the optimization | 2 s« ¢
phase that aims to arrive at the optimum | 3 repeat
and is not discussed here, to the L | Joxkesd ta Ado )
statistical learning of the basin — 5 ) B 4T BN (0’1)

which lies in the focus of this study.
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J,E_t“) +—evaluate (:i:’i”’l))
7 end

We assume a quadratic attraction basin. | st ( { J"(M)}-—l

By evaluating A offspring in each iteration| o | <« Su{@il}
the winner is recorded: y= arg min{J(Z)}.| 10 | tet+1

® denotes the objective function value: 11 until >N,
w:](gj) = min{Jl Y J)‘} output: C%***=statCovariance(S)

Shir, O.M., Roslund J., Yehudayoff A., In: Proceedings of GECCO-2016, ACM Press (2016), 151-152.



Let C denote the covariance matrix of ¥, and let # denote the Hessian about
the optimum "

Theorem: C and H are commuting matrices when the objective
function follows the quadratic approximation, that is, they are
simultaneously diagonalizable and share the same eigenvectors.

Proof sketch: PDF; (7)
1. The density of 7 reads: PDF; (i) = PDF,, (J(Z))- PDFy, (J(&))
Y

2. Target C;i; = / ;xjPDFy (7) A, and apply a change of variables (4~ 'HU=D):
J=U"'%, di=dz.

3. Consider Z;; = (u~'cu),, and show that it vanishes for any i#j due to
symmetry considerations.

4. Hence, T is the diagonalized form of C, with ¢/ holding the eigenvectors.



® We seek the density PDF,, to obtain the covariance form:

PDF,, (1)= A-(1—CDFy, (/)" -PDF, (1)).
® Assuming A—x, we consider minimal generalized extreme
value distributions (GEVD,,), to approximate the density:

POESSY" (1/;) = %Tﬁ'—l exp (—2;%)

® Upon applying the necessary normalization, one obtains:
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® For the isotropic case:
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We consider a practical class of global optimization problems with thousands of
variables whose optimizers may be meshed by a hierarchy of resolutions.

Such problems represent real-world applications of extremely high dimensions,
often discretizing one or several functions, which possess a multiscale nature.

State-of-the-art Evolution Strategies (ESs) obtain fine solutions to the high-scale
formulations only within an impractically large number of objective function calls.

We introduce a novel Multilevel ES (ML-ES) framework to efficiently treat such

problems, adhering to the following assumptions:

= The decision variables are defined on a
one-dimensional grid. .

® The objective function is well-defined per y=ftx)
each scale of the grid. TR

= The model is static - the objective function
does not shift during optimization.
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Shir, O.M., In: Proceedings of GECCO-2016, ACM Press (2016), 33-34.



We introduce a heuristic to address e e el R A
multigrid problems, which represent <ean T

high-dimensional optimization problems | ¢ & ¢ memicyno
possessing a multiscale nature: e T Pr i farepacbiea(M, )
= An automated leveling-up scheme T s

= Search over increasingly finer levels

i’g") ¢—upscale(:c‘;_ l.m)
Se \ {01} +—upscale(S;—; \ {o¢—1 },n¢)
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= Termination after a solution to the i |
ultimate high-scale problem is attained |* fj%sf_}_*;=°l"ﬁs(5vﬂ e
13 ng ==Ny then return 7}

14 else if 2n¢; <Ny then n;.; «2n;
15 else niga 4—Nf

The ES is run on each problem-instance | | !

(level), solving it up to a threshold e,
where each level’s output is upscaled to
become the next level’s input.
= The global step-size is reduced by a factor: g¢ <
= The decision vector and the strategy
parameters are upscaled with an Interpolating operator:

ML-ES featuring a fixed schedule with T.¢+1/ne = 2.

Op—1

Vnre/ne—1

:T:ﬁo) <upscale(L;_,,n¢) , S, <upscale(Se_1,m¢)
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We targeted a simulated TPA system that accounts for effects of linear
dispersion on the electric field, with 2" variables.
Experimental optimization of such a system in dispersive toluene has been
accomplished for a fixed setup (n=128) [LaForge et al., 2011].

ML-ES variants performed very well, utilizing 3~4-10° function calls.

The default variants were not run on the high-definition problem, due to
the excessive computation time.

In sum, ML-ES successfully tackled grid-scales which have never been
handled heretofore and achieved a speed-up by a factor of 10 with respect
to the highest-scale treated (2" decision variables).
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