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Introduction

ESs’ statistical landscape learning
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Introduction

the classical hypothesis C → H−1

• Open question since the development of ESs

• Sheer amount of empirical evidence for this relation + extensive
branding “C=inv(H)” made this hypothesis a practical postulate
throughout the years

• Recent proofs published, yet limited to Derandomization (or
Natural Gradient); they exercise IGO [Akimoto2012, Beyer2014]

• Current study: “going back to basics” using first principles of
probability theory on a classical ES model

• This work concerns the absolutely continuous case, but should still
interest the discrete guys in the audience ...
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Introduction Model

model

quadratic approximation; optimum’s vicinity

J (~x− ~x∗) = J (~x) = ~xT · H · ~x (1)

sampling
λ search-points are generated in each iteration using isotropic
mutations, ~z ∼ N (~0, I);
i.e., ~x1, . . . , ~xλ are independent and each is N (~0, I)

truncation selection (“winners”)

~y = arg min {J(~x1), J(~x2), . . . , J(~xλ)} (2)

ω = J(~y) = min {J(~x1), J(~x2), . . . , J(~xλ)} (3)
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Introduction Model

statistical sampling by (1, λ)-selection

1 t← 0
2 S ← ∅
3 repeat
4 for k ← 1 to λ do

5 ~x
(t+1)
k ← ~x∗ + ~zk, ~zk ∼ N (~0, I)

6 J
(t+1)
k ← evaluate

(
~x

(t+1)
k

)
7 end

8 mt+1 ← arg min

({
J

(t+1)
ı

}λ
ı=1

)
9 S ← S ∪

{
~x

(t+1)
mt+1

}
10 t← t+ 1

11 until t ≥ Niter

output: Cstat =statCovariance(S)
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Introduction Probability Functions

probability functions

isotropic case: H = I
ψ = J(~z) is a random variable obeying the χ2-distribution:

Fχ2 (ψ) =
1

2n/2Γ (n/2)

∫ ψ

0
t
n
2
−1 exp

(
− t

2

)
dt (4)

fχ2 (ψ) =
1

2n/2Γ (n/2)
ψn/2−1 exp

(
−ψ

2

)
(5)

general case: H = UDU−1, D = diag [∆1, . . . ,∆n]

FHχ2(ψ) =
∫∞

0
2
π

sin tψ
2

t cos
(
−tψ + 1

2

∑n
j=1 tan−1 2∆jt

)
×

n∏
j=1

(
1 + ∆2

j t
2
)− 1

4 dt,
(6)
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Introduction Probability Functions

approximation for the general case

Fτχ2 (ψ) =
Υη

Γ (η)

∫ ψ

0
tη−1 exp (−Υt) dt (7)

fτχ2 (ψ) =
Υη

Γ (η)
ψη−1 exp (−Υψ) (8)

Υ and η account for the first two moments of ~zTH~z:

Υ =
1

2

∑n
i=1 ∆i∑n
i=1 ∆2

i

, η =
1

2

(
∑n

i=1 ∆i)
2∑n

i=1 ∆2
i

(9)

Accuracy depends on the eigenvalues’ {∆i} standard deviation.
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The Covariance Matrix

the covariance matrix
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The Covariance Matrix

the analytical form

The origin is set at the parent search-point, which is located at the
optimum:

Cij =

∫
xixjPDF~y (~x) d~x (10)

PDF~y (~x) is an n-dimensional density function characterizing
the winning decision variables about the optimum.

One of the primary goals is to fully understand this expression.
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The Covariance Matrix A Single Winner: (1, λ)-Selection

winners’ density in (1, λ)-selection

Proposition 0

PDF~y (~x) = PDFω (J (~x)) · PDF~z (~x)

PDFψ (J (~x))
(11)

• PDFω : density of the winning value ω

• PDF~z : density for generating an individual by mutation

• PDFψ : density of the objective function values (Eqs. 5 or 8)

sketch: consider the distribution of [~y;ω] on Rn+1

i. sample {J1, . . . , Jλ} according to PDFψ independently
ii. sample {~x1, . . . , ~xλ} conditioned on J1, . . . , Jλ independently
iii. ω is set to the minimum J`, and ~y is set to ~x`
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The Covariance Matrix A Single Winner: (1, λ)-Selection

simultaneous diagonalization: (1, λ)-selection

Proposition 1
The covariance matrix and the Hessian commute and are
simultaneously diagonalizable, when the objective function follows the
quadratic approximation.

sketch:
i. the covariance reads:

Cij =

∫
xixjPDFω

(
~xT · H · ~x

)
· PDF~z (~x)

PDFψ (~xT · H · ~x)
d~x

ii. apply change of variables

U−1HU ≡ diag [∆1,∆2, . . . ,∆n] , ~ϑ = U−1~x, d~ϑ = d~x

iii. target Tij =
(
U−1CU

)
ij

and show that it vanishes for any i 6= j due
to symmetry considerations.
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The Covariance Matrix (µ, λ)-Truncation Selection

(µ, λ)-selection

• J1:λ ≤ J2:λ ≤ . . . ≤ Jλ:λ are the order statistics obtained by sorting
the objective function values.

• ω1:λ, . . . , ωµ:λ are the first µ values from this list.

• ~y1:λ, . . . , ~yµ:λ are their corresponding vectors.

To study the covariance in this case, we consider the pairwise density
of the kth-degree and `th-degree winners (` > k):

PDF~yk:λ,~y`:λ (~xk, ~x`) = PDFωk:λ,ω`:λ (J (~xk) , J (~x`))×

×
(

PDF~z (~xk)

PDFψ (J (~xk))

)
·
(

PDF~z (~x`)

PDFψ (J (~x`))

)
. (12)
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The Covariance Matrix (µ, λ)-Truncation Selection

simultaneous diagonalization: (µ, λ)-selection

Proposition 2
The rank-µ covariance matrix and the Hessian commute and are
simultaneously diagonalizable, when the objective function follows the
quadratic approximation.

sketch:
i. the covariance reads (up to a factor):

Cij ∝
∑
k<`≤µ

∫
xk,ix`,jPDF~yk:λ,~y`:λ (~xk, ~x`) d~xkd~x`

ii. repeat proof steps of Proposition 1 and apply the same symmetry
argumentation
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The Inverse Relation

the inverse relation
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The Inverse Relation

winning values’ density & proposition 3

For simplicity, we consider (1, λ)-selection.

CDFω (v) = 1− (1− CDFψ (v))λ (13)

PDFω (v) = λ · (1− CDFψ (v))λ−1 · PDFψ (v) (14)

Proposition 3:
For every invertible H and λ ∈ N, there exists a constant
α = α(H, λ) > 0 such that

lim
λ→∞

αCH = I.
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The Inverse Relation Proving limλ→∞ αCH = I

intuition for proving proposition 3

Proposition 1 tells us that we may assume that both H and C are
diagonalizable in the same base.

For a large λ, the winner ~y is close to the origin, which in turn implies
that (CH)ii does not actually depend on i.
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The Inverse Relation Proving limλ→∞ αCH = I

proof sketch for proposition 3

i. assume H is diagonal and so off-diagonal of CH vanish

ii. Cii = E
[
y2
i

]
=
∫
x2
iλ(1− CDFψ(J(~x)))λ−1f(‖~x‖)

iii. apply change of variables into ri =
√

∆i · xi s.t.

∆iCii = cH
∫
r2
i λ(1− CDFψ(‖~r‖2))λ−1 exp

(
−Ĵ(~r)

)
d~r

iv. show that α∆iCii ≥ 1− ε1 and α∆iCii ≤ 1 + ε2 (ε1 and ε2 tend to
zero as λ tends to infinity)

v. for a non-diagonal H,

lim
λ→∞

αCH − I = lim
λ→∞

U (αT D − I)U−1 = 0
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GEVD Approximation

limit distributions of order statistics
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GEVD Approximation Unveiling PDFω (J (~x))

targeting PDFω (J (~x))

Using the explicit forms of CDFψ and PDFψ, the desired density function
PDFω (J (~x)) is obtained, however not in a closed form.

Next, we seek an approximation for PDFω (J (~x)), in order to calculate
Cij when λ tends to infinity.

Lλ (v) = 1− (1− CDFψ (v))λ

lim
λ−→∞

Lλ (v) =

{
0 if CDFψ (v) = 0
1 if CDFψ (v) > 0

normalization will be needed to avoid degeneracy (the distributions
tend to the origin).
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GEVD Approximation Unveiling PDFω (J (~x))

von-Mises family of distributions

theorem [Fisher-Tippett]
the generalized extreme value distributions (GEVD) are the only
non-degenerate family of distributions satisfying this limit:

Lκ (v;κ1, κ2, κ3) = 1− exp

{
−
[
1 + κ3

(
v − κ1

κ2

)]1/κ3
}

(15)

determination of shape parameter:

κ3 = lim
ε−→0

− log2

CDF−1
ψ (ε)− CDF−1

ψ (2ε)

CDF−1
ψ (2ε)− CDF−1

ψ (4ε)
,

• If κ3 > 0, CDFψ belongs to the Weibull domain,

• if κ3 = 0, CDFψ belongs to the Gumbel domain, and

• if κ3 < 0, CDFψ belongs to the Frechét domain.
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GEVD Approximation Unveiling PDFω (J (~x))

CDFψ belongs to Weibull

Proposition 4:
For the isotropic and transformed χ2 distributions, Fχ2 (ψ) , Fτχ2 (ψ),
the limits exist and read κ3 = 2/n.

Corollary:
Under the GEVD approximation for λ→∞, by normalizing the
random variable to ṽ = (v − b∗λ) /a∗λ and using the tail-index result,
1/κ3 = n

2 , a single winning event is described by:

CDFGEVD
ω (ṽ) = 1− exp

(
−ṽ

n
2

)
PDFGEVD

ω (ṽ) =
n

2
ṽ
n
2
−1 exp

(
−ṽ

n
2

) (16)
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GEVD Approximation Covariance Derivation for (1, λ)-Selection

Cij approximated for (1, λ)

Cij =

∫ +∞

−∞
· · ·
∫ +∞

−∞
xixj

n

2
J̃(~x)

n
2
−1 exp

[
−J̃(~x)

n
2

]
×

×
1√

(2π)n
exp

(
−1

2~x
T~x
)

Υη

Γ(η)J(~x)η−1 exp (−ΥJ(~x))
dx1dx2 · · · dxn

(17)

J is assumed here to satisfy J (~x) = ~xT · H · ~x ; a∗λ = F−1
χ2

(
1
λ

)
:

Cij = ΦC

∫ +∞

−∞
· · ·
∫ +∞

−∞
xixj

(
~xTH~x

)n
2
−η ×

× exp

[
Υ~xTH~x−

(
~xTH~x
a∗λ

)n
2

− 1

2
~xT~x

]
dx1dx2 · · · dxn

(18)
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GEVD Approximation Covariance Derivation for (1, λ)-Selection

integration

For a general positive-definite H, the integral in Eq. 18 has an
unknown closed form; it is easy to see that it commutes with H.

isotropic case H = h0I:

C(H=h0I) =
Γ(n2 ) · Γ

(
1 + 2

n

)
· φ (n) · a∗λ

2πn/2
· H−1 (19)

with

φ (n) =

{
πm

m! n = 2m
2m+1πm

1·3·5···(2m+1) n = 2m+ 1 .
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Simulation Study

numerical validation
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Simulation Study Primary Propositions Corroboration

eigendecomposition and commutator errors
{10, 30, 80}–dimensional separable ellipses (Hellipse)ii = c

i−1
n−1 with

Niter = 105.
[LEFT] c = 2 . . . 1000 using λ = 100
[RIGHT] c = 2 . . . 20 over λ = {20, 100, 1000}

Measure: C.E.: ‖HellipseCstat − CstatHellipse‖frob

Condition Number

n=10

n=30

n=80

Condition Number

n=10, =20λ

n=10, =100λ

n=10, =1000λ
n=30, =20λ

n=30, =100λ
n=30, =1000λ

n=80, =20λ

n=80, =100λ
n=80, =1000λ
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Simulation Study Primary Propositions Corroboration

the inverse relation under a large population

{10, 30, 80}–dimensional separable ellipses (Hellipse)ii = c
i−1
n−1 with

Niter = 105.
[LEFT] c = 2 . . . 1000 using λ = 100
[RIGHT] c = 2 . . . 20 over λ = {20, 100, 1000}

Measure: I.D.: cond (HellipseCstat)− 1.0

Condition Number

n=10

n=30

n=80

Condition Number

n=10, =20λ

n=10, =100λ

n=10, =1000λ
n=30, =20λ

n=30, =100λ
n=30, =1000λ

n=80, =20λ

n=80, =100λ
n=80, =1000λ
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Simulation Study Statistical Distributions

statistical distributions assessment

We consider four quadratic basins of attraction:
(H-1) n = 3, H1 =

[√
2/2 0.25 0.1; 0.25 1 0; 0.1 0

√
2
]

(H-2) n = 10, H2 = diag [1.0, 1.5, . . . , 5.5]

(H-3) n = 30, H3 = diag
[
~I10, 2 · ~I10, 3 · ~I10

]
(H-4) n = 100, H4 = 2.0 · I100×100

We numerically assess the following distributions:
(i) density of J(~x) over a single iteration: fτχ2

(ii) density of winning events: PDFω vs. PDFGEVD
ω
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Simulation Study Statistical Distributions

(i) density of J(~x) over a single iteration: fτχ2

H1 (n = 3) H2 (n = 10)
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Simulation Study Statistical Distributions

(ii) density of winning events: PDFω vs. PDFGEVD
ω

H1 (n = 3)
(
λ = 20, Niter = 105

)
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λ = 1000, Niter = 2 · 105

)
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Simulation Study Statistical Distributions

density of winning events: H2 feat. various settings(
λ = 1000, Niter = 105

)
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Simulation Study Validating the Approximated Integral

validating the approximated integral

for the isotropic case, Cstat for the 100-dimensional case (H-4) was
constructed using λ = 5000 and over 5 · 105 iterations to obtain a
diagonal with an expected value

0.5617± 0.0012

Eq. 19 obtained a value of
0.5680
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Simulation Study Validating the Approximated Integral

validating the integral for H1
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Simulation Study Validating the Approximated Integral

wrapping-up
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discussion

i. C and H commute (for any λ).
this learning capability stems only from two components:
(1) isotropic Gaussian mutations, and (2) rank-based selection.
* learning the landscape is an inherent property of classical ESs.
** it does not require Derandomization (adaptation) nor IGO (proofs)

ii. limλ→∞ αCH = I ; this approximation has two parts:
(1) guaranteeing that Cstat is pointwise ε-close to C with confidence
1− δ. the eigenvalues of C are at least Ω(1/λ2); for Cstat to
meaningfully approach C it requires ε� 1/λ2.
=⇒ number of samples required for this part is polynomial in
λ, 1/ε, ln(n) and ln(1/δ).
(2) guaranteeing that C is pointwise ε-close to αH−1 , α (λ,H) > 0.
=⇒ upper bound on the number of samples required for this part
depends on ε, λ and on the spectrum of H.
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next steps

i. what mechanisms can increase the convergence rates?

ii. analogue phenomena near a general point:

Ei =

∫
xiPDF~y (~x) d~x

Cij =

∫
(xi − Ei) (xj − Ej) PDF~y (~x) d~x

similar behavior was indeed observed in simulations.

* we possess a proof sketch for the general case.
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