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Introduction

ESs’ statistical landscape learning
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Introduction

the classical hypothesis C — H !

e Open question since the development of ESs

e Sheer amount of empirical evidence for this relation + extensive
branding “C=inv(H)” made this hypothesis a practical postulate
throughout the years

e Recent proofs published, yet limited to Derandomization (or
Natural Gradient); they exercise IGO [Akimoto2012, Beyer2014]
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Introduction

the classical hypothesis C — H !

e Open question since the development of ESs

e Sheer amount of empirical evidence for this relation + extensive
branding “C=inv(H)” made this hypothesis a practical postulate
throughout the years

e Recent proofs published, yet limited to Derandomization (or
Natural Gradient); they exercise IGO [Akimoto2012, Beyer2014]

e Current study: “going back to basics” using first principles of
probability theory on a classical ES model

e This work concerns the absolutely continuous case, but should still
interest the discrete guys in the audience ...
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Introduction  Model

model
quadratic approximation; optimum’s vicinity

J@-2) =J@) =3 - H-T (1)

Shir (THC) & Yehudayoff (IIT) ESs’ Statistical Learning Ability FOGA-XIV 2017 5 /37



Introduction  Model
model
quadratic approximation; optimum’s vicinity
J(@—7) =J@) =27 - H-T
sampling
A search-points are generated in each iteration using isotropic

mutations, Z ~ N (0, I);
i.e., #1,..., ) are independent and each is N'(0,I)
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Introduction  Model
model

quadratic approximation; optimum’s vicinity

J(@—7) =J@) =27 - H-T
sampling
A search-points are generated in each iteration using isotropic
mutations, Z ~ N (0, I);
i.e., #1,..., ) are independent and each is N'(0,I)
truncation selection (“winners”)

g =argmin{J(z1), J(Z2), ..., J(Z))}

w=JY) =min{J(z1), J(Z2), ..., J(@\)}
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Introduction  Model

statistical sampling by (1, A)-selection

oUW

(=]

10
11

t<+ 0
S+ 0
repeat
for k< 1 to X do
(t+1) o o ~
T+ 2, 2, ~N(0,1)
J,gtﬂ) < evaluate (:E',(frl))
end

A
Myy1 < argmin ({Jz(tﬂ)}

S« Su {fﬁ,ﬁjjf}
t<—t+1
until ¢ > Nite'/‘

output: C5*** =statCovariance(S)
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Introduction  Probability Functions

probability functions

isotropic case: H =1

Y = J(Z) is a random variable obeying the x2-distribution:

B 1 Yony t
FXQ (’IJZ)) = M(n/m/(; t2 exXp (—2> dt

__ 1 n/2-1 _¢>
fX2 (LZ]) = on/2T (n/2)¢) eXp ( 9
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Introduction  Probability Functions

probability functions

isotropic case: H =1
Y = J(Z) is a random variable obeying the x2-distribution:

B 1 Yony t
FXQ ('IJZ)) = 2”/21—‘(7’1//2)/(; t2 exXp (—2> dt

__ 1 n/2-1 _¢>
fX2 (LZ]) = on/2T (n/2)'¢) eXp ( 9

general case: H =UDU!, D =diag[A1,...,Ay]

in t’ll)
Fuy2(¥) = [5° 72;3 2 cos <—tw + 3 > i1 tan~! 2Ajt)

[

H (1+A3%)7% dt,
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Introduction  Probability Functions

approximation for the general case

P
Fp (4) = Fi;) /0 1L exp (—T1) dt
ot () = st exp (<T)

T and 7 account for the first two moments of z7Hz:

SIS > SV T MY
25 A 2 YA
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Introduction  Probability Functions

approximation for the general case

P
Fp (4) = Fi;) /0 1L exp (—T1) dt
ot () = st exp (<T)

T and 7 account for the first two moments of z7Hz:

SIS > SV T MY
25 A 2 YA

Accuracy depends on the eigenvalues’ {A;} standard deviation.
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The Covariance Matrix

the covariance matrix
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The Covariance Matrix

the analytical form

The origin is set at the parent search-point, which is located at the
optimum:

Cij = /xiijDFg*(f) dr (10)

PDFj; () is an n-dimensional density function characterizing
the winning decision variables about the optimum.
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The Covariance Matrix

the analytical form

The origin is set at the parent search-point, which is located at the
optimum:

Cij = /xiijDFg*(f) dr (10)

PDFj; () is an n-dimensional density function characterizing
the winning decision variables about the optimum.

One of the primary goals is to fully understand this expression.
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The Covariance Matrix A Single Winner: (1, X)-Selection

winners’ density in (1, A)-selection

Proposition 0

PDF; (7

PDF; (%) = PDF,, (J (7)) - w07, (J (@)

e PDF, : density of the winning value w
e PDF: : density for generating an individual by mutation

e PDFy, : density of the objective function values (Egs. 5 or 8)
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The Covariance Matrix A Single Winner: (1, X)-Selection

winners’ density in (1, A)-selection

Proposition 0

PDF; (7

PDF; (%) = PDF,, (J (7)) - w07, (J (@)

e PDF, : density of the winning value w

e PDF: : density for generating an individual by mutation

e PDFy, : density of the objective function values (Egs. 5 or 8)
sketch: consider the distribution of [7;w] on R"*!
i. sample {.J1,...,Jy\} according to PDF, independently

ii. sample {71, ...,Z\} conditioned on Ji, ..., Jy\ independently
iii. w is set to the minimum Jy, and ¥ is set to Ty
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The Covariance Matrix A Single Winner: (1, X)-Selection

simultaneous diagonalization: (1, \)-selection

Proposition 1

The covariance matrix and the Hessian commute and are
simultaneously diagonalizable, when the objective function follows the
quadratic approximation.
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The Covariance Matrix A Single Winner: (1, X)-Selection

simultaneous diagonalization: (1, \)-selection

Proposition 1

The covariance matrix and the Hessian commute and are
simultaneously diagonalizable, when the objective function follows the
quadratic approximation.

sketch:
i. the covariance reads:

PDF ;> (%)

4
PDFy (27 - H - @) v

Cij = /wiijDFw (fT -H - f) .

ii. apply change of variables
U'HU = diag[Ar, Ag, ..., Ay, d=U"'Z, dJ=dz

iii. target T;; = (L{ _ICL{) . and show that it vanishes for any i # j due
to symmetry considerations.
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The Covariance Matrix  (u, A)-Truncation Selection

(1, A)-selection

o Jin < Joy < ... < Jy.y are the order statistics obtained by sorting
the objective function values.
® Wiy, ..., Wy are the first yu values from this list.

® 1\, - -+, Yu:x are their corresponding vectors.
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The Covariance Matrix  (u, A)-Truncation Selection

(1, A)-selection

o Jin < Joy < ... < Jy.y are the order statistics obtained by sorting
the objective function values.
® Wiy, ..., Wy are the first yu values from this list.

® 1\, - -+, Yu:x are their corresponding vectors.

To study the covariance in this case, we consider the pairwise density
of the k''-degree and ¢*"-degree winners (¢ > k):

PDFy, \ i (T, Te) = PDFuy s wypy (S (T) , J (20)) X

(e ) (e

FOGA-XIV 2017 13 / 37
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The Covariance Matrix  (u, A)-Truncation Selection

simultaneous diagonalization: (u, \)-selection

Proposition 2

The rank-p covariance matrix and the Hessian commute and are
simultaneously diagonalizable, when the objective function follows the
quadratic approximation.
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The Covariance Matrix  (u, A)-Truncation Selection

simultaneous diagonalization: (u, \)-selection

Proposition 2

The rank-p covariance matrix and the Hessian commute and are
simultaneously diagonalizable, when the objective function follows the
quadratic approximation.

sketch:
i. the covariance reads (up to a factor):

Cij o Z /xmxg,jPDng%g“ (fk,fg) dz,dd,
k<t<p

ii. repeat proof steps of Proposition 1 and apply the same symmetry
argumentation
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The Inverse Relation

the inverse relation
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The Inverse Relation
winning values’ density & proposition 3

For simplicity, we consider (1, \)-selection.
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The Inverse Relation
winning values’ density & proposition 3

For simplicity, we consider (1, \)-selection.

CDF,, (v) = 1 — (1 — CDFy; (v))*

PDF,, (v) = A - (1 — CDF,, (v))*~" - PDFy, (v)
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The Inverse Relation
winning values’ density & proposition 3

For simplicity, we consider (1, \)-selection.

CDF,, (v) = 1 — (1 — CDFy; (v))*

PDF,, (v) = A - (1 — CDF,, (v))*~" - PDFy, (v)

Proposition 3:
For every invertible H and A € N, there exists a constant
a = a(H, ) > 0 such that

lim aCH =1.
A—00
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The Inverse Relation  Proving limy_, ., aCH =1

intuition for proving proposition 3

Proposition 1 tells us that we may assume that both H and C are
diagonalizable in the same base.

For a large A, the winner ¥ is close to the origin, which in turn implies
that (CH);; does not actually depend on 1.
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The Inverse Relation  Proving limy_, ., aCH =1

proof sketch for proposition 3

i. assume H is diagonal and so off-diagonal of CH vanish

i, Cii =R [y7] = [2FA(1 — CDFy(J (@) £ (|1 7]))
iii. apply change of variables into r; = /A, - ; s.t.
AiCii = en [ T2A(1 = CDFy (|I7I)* exp (—J (7)) dF

iv. show that aA;Ci; > 1 —€; and aA;Ci; <1+ €3 (€1 and €3 tend to

zero as A tends to infinity)

v. for a non-diagonal H,

lim aCH — 1= lim U (aTD -T)UU ' =0
A—00 A—00
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GEVD Approximation

limit distributions of order statistics
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GEVD Approximation  Unveiling PDF, (J (&))
targeting PDF,, (J (7))

Using the explicit forms of CDF,, and PDFy,, the desired density function
PDF,, (J (%)) is obtained, however not in a closed form.

Next, we seek an approzimation for PDF,, (J (Z)), in order to calculate
Ci; when X tends to infinity.

L3 (v) =1~ (1 CDFy (v))*
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Using the explicit forms of CDF,, and PDFy,, the desired density function
PDF,, (J (%)) is obtained, however not in a closed form.

Next, we seek an approzimation for PDF,, (J (Z)), in order to calculate
Ci; when X tends to infinity.

L3 (v) =1~ (1 CDFy (v))*

. [0 ifCDFy(v) =0
A £x(v) = { 1 if CDFy (v) >0
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GEVD Approximation  Unveiling PDF, (J (&))
targeting PDF,, (J (7))

Using the explicit forms of CDF,, and PDFy,, the desired density function
PDF,, (J (%)) is obtained, however not in a closed form.

Next, we seek an approzimation for PDF,, (J (Z)), in order to calculate
Ci; when X tends to infinity.

Ly (v) =1— (1 - CDFy (v))*
. [ 0 ifCDFy (v) =0
A £x(v) = { 1 if CDFy (v) >0

normalization will be needed to avoid degeneracy (the distributions
tend to the origin).
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GEVD Approximation  Unveiling PDF, (J (&))

von-Mises family of distributions

theorem
the generalized extreme value distributions (GEVD) are the only
non-degenerate family of distributions satisfying this limit:

Ly (v 51, K, Ki3) = 1 — exp {— [1 1 s (” — ’“ﬂ 1/n3} (15)

K2
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GEVD Approximation  Unveiling PDF, (J (&))

von-Mises family of distributions

theorem
the generalized extreme value distributions (GEVD) are the only

non-degenerate family of distributions satisfying this limit:

. 1/k3
ﬁm(v;ﬁl,ﬁg,mg):l—exp{— [1+f<c3 (vﬁm)} }
2

determination of shape parameter:

L CDF,,' (¢) — CDF,," (2¢)
k3 = lim —log, =5 — ,
e—0 CDF," (2¢) — CDF,,~ (4¢)

e If k3 > 0, CDFy, belongs to the Weibull domain,
e if k3 = 0, CDF, belongs to the Gumbel domain, and
e if k3 < 0, CDFy, belongs to the Frechét domain.
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GEVD Approximation  Unveiling PDF, (J (&))

CDF, belongs to Weibull

Proposition 4:
For the isotropic and transformed x? distributions, F2 (), Fre (¥),
the limits exist and read k3 = 2/n.
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GEVD Approximation  Unveiling PDF, (J (&))

CDF, belongs to Weibull

Proposition 4:
For the isotropic and transformed x? distributions, F2 (), Fre (¥),
the limits exist and read k3 = 2/n.

Corollary:

Under the GEVD approximation for A — oo, by normalizing the
random variable to © = (v — b}) /a3 and using the tail-index result,
1/k3 = %5, a single winning event is described by:

(16
PDFCEVD (7)) = :
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GEVD Approximation  Covariance Derivation for (1, X)-Selection

C;; approximated for (1, \)

(; 7 eXP (—327%)
X = :r —dzdzy - - - dxy,
F(n)J(m)W Lexp (=T J (%))

Shir (THC) & Yehudayoff (IIT) ESs’ Statistical Learning Ability FOGA-XIV 2017

(17)

23 / 37



GEVD Approximation  Covariance Derivation for (1, X)-Selection

C;; approximated for (1, \)

(; B exp (—%a_ﬁ’Ta?) (17)
X = :r T —dzdzy - - - dxy,
F(n)J(m)" exp (=T J(Z))
J is assumed here to satisfy J (Z) =T - H -7 ; a} Fx_21 (%)
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GEVD Approximation  Covariance Derivation for (1, X)-Selection

C;; approximated for (1, \)

(; 7 eXP (—327%)
X = :r —dzdzy - - - dxy,
F(n)J(m)W Lexp (=T J (%))

—00

n
FTHEN? 1,
X exp

YEIHT — ( . — =T :c] dzidzs - - - dz,
ay 2
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GEVD Approximation  Covariance Derivation for (1, X)-Selection

integration

For a general positive-definite H, the integral in Eq. 18 has an
unknown closed form; it is easy to see that it commutes with H.
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GEVD Approximation  Covariance Derivation for (1, X)-Selection

integration
For a general positive-definite H, the integral in Eq. 18 has an
unknown closed form; it is easy to see that it commutes with H.

isotropic case H = hgl:

c(H=hol) _ (5 T(+2) ¢(n) a Lyl

2n/2
with
i n=2m
¢(n) =13 M™oymrigm
1-3-5---(2%“) n=2m+1.
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Simulation Study

numerical validation
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Simulation Study  Primary Propositions Corroboration

eigendecomposition and commutator errors

{10, 30, 80}-dimensional separable ellipses (Hellipse);; = =T with
Niter = 105-

[LEFT] ¢ = 2...1000 using A = 100

[RIGHT] ¢ = 2...20 over A = {20, 100, 1000}

. . tat tat
Measure: C.E.: || HellipseC®*** — C=*** Heltipse|lfrob

80 15 T T
E 2 ¢ n=10,2=20 m "
= & ¢ n=10,2=100 n ]
z & 4+ n=10,2=1000 n g, "
3 2 e n=30,1=20 . .
s - " .
;gfﬁ E L] [ ] "
e g2 1w * "
(S} 13} . "
I | [ L I
H N -
H - m
9 < -
3 S 05 " " Ps b
£ = " o s,
H e, "%, 0
. . H e ®8°e : .o
: N e o o ®
T I I N T I3
0'!!!@606%8933¥0’0“
0 100 200 300 400 500 600 700 800 900 1000 2 4 6 8 10 12 14 16 18 20
Condition Number Con%ition Number — PR
= A
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Simulation Study  Primary Propositions Corroboration

the inverse relation under a large population
{10, 30, 80}-dimensional separable ellipses (Hellipse);; = v with
Niger = 10°.
[LEFT] ¢ = 2...1000 using A = 100
[RIGHT] ¢ = 2...20 over A = {20, 100, 1000}

Measure: I.D.: cond (HellipseCZ**) — 1.0

12 :
4 0=10,2=20
4 n=10,%=100 [
S < 10l ¢ n=10,2=1000 [ ]
| n ° A=20 -
o — . =100 [ []
£ g . ~1000 ot
& 5 8rlm A=20 '] L]
3 S . =100 =, " et
£ 2 . A=1000 = . ]
& & . [ .
< ) g " ° ° ®
g 5 LI | [ ] 1 o * :
g g R S R
. - = =g o ® 3 H 3
a | | Ll :::’..0’. PRI )
- - i S e ¢ ® s oot ISR
7] ® ¢ ¢ PRI
* TR
1R REERRERESDES
0 100 200 300 400 500 600 700 800 900 1000 2 4 6 8 0 12 14 16 18 20
Condition Number Condition Number _ PR
= = = E Dar
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Simulation Study  Statistical Distributions

statistical distributions assessment

We consider four quadratic basins of attraction:

(H-1) n =3, H1 = [v2/20.250.1; 0.251 0; 0.1 0 V2]
(H-2) n =10, Ho = diag[1.0,1.5,...,5.5]

(H-3) n = 30, Hs = diag [fw, 9.0 3. flo}

(H-4) n =100, Hy = 2.0 - [100x100

We numerically assess the following distributions:

(i) density of J(Z) over a single iteration: f.,»
(ii) density of winning events: PDF,, vs. PDFSEVD
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Simulation Study

(i) density of J(Z) over

Statistical Distributions

a single iteration: fr,»

Hl (n:3)

Ha (n = 10)

[ sampling

e ()

[0 sampiing

- ()

0.00
o i i
40 60 " 80 100 120 140
0. 0.0
I samping i —Jsamping
= fry2 (1) 0014 |I -l
0.02! i &
0017
0.02 |
001
0.01 1 0.00 1 |
0.006 |
0.01 I
0.004

1
0.005
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Simulation Study  Statistical Distributions

(ii) density of winning events: PDF,, vs. PDFCEVD
Hi (n=3) (A =20, Niger = 10°)

"
07 I'

0 1 2 34 5 3
]

Hz (n =30) (A=1000, Niter = 2-10°)

0
[ Normalized Sampling

- == PE (] i

N

'
LY
L
LY
o
! [l
! [l
! '
4 1

.
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Simulation Study  Statistical Distributions

density of winning events: Hs feat. various settings
(A =1000, Niter = 10°)

0. 2
[ Raw Sampling s N :N?mgwjzeq Samping
- = =PDE.(¥) R R ()
! A}
16| A \
4 )
14 \
f Y
1.2 B 1
| '

I
od ||| )
02 | ll
. # il ||| e
o 2 [ Ry 16 % ~T2 04 06 08 1- 12 14 16 I8 2

(A = 20000, Niter =5 -10°)

18 1o N 2 Samping
oty
16 \ 16 i \
.
14 ‘ 1.4]
12) i 12
1 1 {
f
0.8] I' 0.8] i
0.8] f \ 0.6] |
i il ff 'y
f Y f 0
0.4] 7} 0.4] i il
g b f
02 S y 02 r !
’ b r he
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Simulation Study  Validating the Approximated Integral

validating the approximated integral

for the isotropic case, C3*2* for the 100-dimensional case (H-4) was
constructed using A = 5000 and over 5 - 10° iterations to obtain a
diagonal with an expected value

0.5617 £ 0.0012

Eq. 19 obtained a value of
0.5680
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Simulation Study  Validating the Approximated Integral

validating the integral for H;

01618  —0.0367 —0.0107 01692 —0.4680  0.8674
cEatt — [ 00367 0.1179  0.0024 uBatl = (00081 —0.8677 —0.4873
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Wiser=10"} =\ 00104 0.0026 00764 00115 {Niser=10°} 9805 0.1664 —0.1051 0-0077
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Nieer=510°3 7\ 00702 0.0023  0.0763 0.0123 {Nieer=510°3 7 \ g 9502 01690  —0.1028 0-0034
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o = [—0.0346 01116 0.0023 = | v — (00042 058680 —0.4875 =
=5 6 2 V. =5 6 7
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00011 —0.0003  0.1126 : 0.9807 01675  —0.1010 :
o <3 = Dae
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Simulation Study  Validating the Approximated Integral

wrapping-up
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discussion

i. C and H commute (for any \).

this learning capability stems only from two components:

(1) isotropic Gaussian mutations, and (2) rank-based selection.

* learning the landscape is an inherent property of classical ESs.

** it does not require Derandomization (adaptation) nor IGO (proofs)
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discussion

i. C and H commute (for any \).

this learning capability stems only from two components:

(1) isotropic Gaussian mutations, and (2) rank-based selection.

* learning the landscape is an inherent property of classical ESs.

** it does not require Derandomization (adaptation) nor IGO (proofs)

ii. limy_ 00 aCH =1 ; this approximation has two parts:

(1) guaranteeing that C3*2* is pointwise e-close to C with confidence
1 — 6. the eigenvalues of C are at least Q(1/)2); for C5*2* to
meaningfully approach C it requires ¢ < 1/\2.

= number of samples required for this part is polynomial in

A, 1/e,In(n) and In(1/6).

(2) guaranteeing that C is pointwise e-close to a1, a (A, H) > 0.
— upper bound on the number of samples required for this part
depends on €, A and on the spectrum of H.
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next steps

i. what mechanisms can increase the convergence rates?
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next steps

i. what mechanisms can increase the convergence rates?
ii. analogue phenomena near a general point:

& = /xiPDFg (f) dz

Cij = /(SL‘Z — 51') (acj — Ej) PDFy; (a‘:’) dz

similar behavior was indeed observed in simulations.
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next steps

i. what mechanisms can increase the convergence rates?
ii. analogue phenomena near a general point:

& = /xiPDFg (f) dz
i = [ (wi— &) (2 — &) Pory ) d7
similar behavior was indeed observed in simulations.

* we possess a proof sketch for the general case.
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