Foundations of Correlated Mutations for Integer Programming

FOGA'25 · Leiden, The Netherlands

Ofer M. Shir ofersh@telhai.ac.il

Michael Emmerich
michael.t.m.emmerich@jyu.fi

Framework: Heuristics for Integer Programming (IP)

IP's theoretical complexity recently advanced to $(\log(2n))^{O(n)}$ steps [Rothvoss-Reis'24], but heuristics dominate practice. Evolution Strategies are especially attractive solvers:

- Intrinsic mixed-integer capabilities
- Well-developed self-adaptation mechanisms
- High efficacy in handling unbounded search spaces in practice

Notation and Preliminaries

ES Mutation Mechanism:

$$\vec{x}_{\text{NEW}} = \vec{x}_{\text{CURR}} + \vec{z} \in \mathbb{Z}^n$$

 \vec{z} drawn from a multivariate distribution.

Discrete Probability:

$$\Pr\{z=k\} = p_k, \quad \sum_k p_k = 1.0$$

Shannon entropy (unpredictability):

$$H := -\sum_{k=-\infty}^{\infty} p_k \log_2 p_k$$

Key Metrics:

 ℓ_1 -norm (integer lattice distance):

$$\|\vec{z}\|_1 := \sum_{i=1}^n |z_i|$$

The expectation is the **mean step-size**

$$S := \mathbb{E}[\|\vec{z}\|_1] = \sum_{i=1}^n \mathbb{E}[|z_i|_1],$$

due to the stochastic independence. For *n* i.i.d. variables: $S = n \cdot \mathbb{E}[|z_1|]$.

Working Hypothesis and Research Questions

Hypothesis: the ℓ_1 -norm is the natural measure over the integer lattice.

The role of (truncated) Gaussianity remains unclear. Can we leverage established ℓ_2 -norm continuous results?

Research Questions:

- Geometry & Entropy: How to design mutations respecting ℓ_1 geometry?
- **2** Correlated ℓ_1 -based mutations: Can we construct correlated preserving dependencies?

Integer Mutation Distributions

Discrete Uniform (DU)	Shifted Binomial (SB)	Truncated Normal (TN)	Double Geometric (DG)
Range: $\{-N,, N\}$ $\mathbf{Pr}\{X = k\} = \frac{1}{2N+1}$	Range: $\{-N/2,, N/2\}$ $\mathbf{Pr}\{Y = k\} = \binom{N}{k + \frac{N}{2}} 2^{-N}$	Support: \mathbb{Z} ; $z \sim \mathcal{N}(0, \sigma^2)$ Pr {round(z) = k} = $\frac{1}{2} \left[\operatorname{erf} \left(\frac{k+0.5}{\sqrt{2}\sigma} \right) - \operatorname{erf} \left(\frac{k-0.5}{\sqrt{2}\sigma} \right) \right]$	Support: \mathbb{Z} ; $z = \mathcal{G}(p) - \mathcal{G}(p)$ $\mathbf{Pr}\{z = k\} = \frac{p}{2-p}(1-p)^{ k }$
Step: $S_{DU} = n \frac{N(N+1)}{2N+1}$	Step: $S_{SB} \approx n \sqrt{\frac{2N}{\pi}}$	Step: $S_{TN} \approx n\sigma \sqrt{\frac{2}{\pi}}$	Step: $S_{DG} = n \frac{2(1-p)}{p(2-p)}$
Entropy: $H = \log_2(2N + 1)$ Max entropy on range	Historical: First ES (1964) via Galton boards	Most common in IESs ℓ_2 -based geometry	ℓ_1 -optimal (Rudolph) Max entropy given S

Empirical Mean of ℓ_1 vs. ℓ_2 : TN & DG

Populations of randomly generated *n*-dimensional integer vectors with an increasing scale of individual step-sizes, that is $S_i = K \cdot i$, subject to a factor $K \in \{1, ..., 50\}$:

Correlated Integer Mutations via Rotations

Challenge: ℓ_1 -norm-preserving rotations are unrealistic in the general case. How to correlate?

Approach: Apply Schwefel's rotations and round:

$$\vec{z}_c = \text{round}\left[\left(\prod_{i=1}^{n-1} \prod_{j=i+1}^{n} \mathbf{R}(\alpha_{ij})\right) \cdot \vec{z}_u\right]$$

 $\vec{\alpha}$: n(n-1)/2-dimensional vector of angles.

Implementation:

rotateInt
$$(\vec{z}, \vec{\alpha})$$

for $j = 1, ..., n \cdot (n-1)/2$ do
 $\vec{z} \longleftarrow \mathbf{R}(\alpha_j)\vec{z}$
end
return {round (\vec{z}) }

Input: uncorrelated \vec{z}_u , angles $\vec{\alpha}$ Output: correlated integer \vec{z}_c

Rotation matrix R $(\alpha_{k\ell})$: $r_{kk} = r_{\ell\ell} = \cos(\alpha_{k\ell})$, $r_{k\ell} = -r_{\ell k} = -\sin(\alpha_{k\ell})$ (identity otherwise)

2D Population Visualization (population size = 10^4)

Heatmaps depicting populations of rotated 2D samples with $S_1 = 1$, $S_2 = 2$ and $\theta \in \{0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{\pi}{2}\}$ (set in this order clockwise - see titles). [LEFT, green]: TN distribution, [RIGHT, red]: DG distribution.

1-norm and Statistical Correlation under Rotations

Shannon's 1D Entropy vs. Mean Step-Size: DG is the Maximizer

Key Finding: The entropy function of single-variable distributions over the spectrum of S reveals that DG achieves maximum entropy while controlling the defining step-size.

This relationship demonstrates the optimality of the DG method in terms of information-theoretic measures, numerically validating Rudolph's result.

Estimated Entropy of 2D Samples: Correlated & Uncorrelated

Numerical Validation: Unbounded Integer Quadratic

Conditioning: $c \in \{10, 10^2, \dots, 10^6\}$ • Total: 24 instances/dimension

Results of the Standard-IES per 64D

Key findings:

- uncorrDG dominates separable problems
- corrDG dominates nonseparable problems
- DG-based IESs consistently outperform TN-based

Summary and Outlook

Key Contributions:

- **Theoretical:** Established that integer optimization benefits from ℓ_1 -norm symmetries rather than classical ℓ_2 -invariance, motivating geometry-respecting mutation operators for discrete spaces
- Algorithmic: Extended DG distribution to correlated integer sampling, achieving highest entropy among tested kernels for given step lengths, thus maximizing exploratory power
- Empirical: Demonstrated superior convergence on IQP benchmarks, though revealing universal stagnation near optima - a phase-transition-like phenomenon requiring further investigation

Future Directions: Runtime analysis of stagnation mechanisms • Derandomized step-size adaptation (CMA-ES integration) • NK landscapes and MI testbeds • Boundary-aware mutations for constrained problems