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Framework: Heuristics for Integer Programming (IP)
IP’s theoretical complexity recently advanced to (log(2𝑛))O(𝑛) steps [Rothvoss-Reis’24],
but heuristics dominate practice. Evolution Strategies are especially attractive solvers:
• Intrinsic mixed-integer capabilities
• Well-developed self-adaptation mechanisms
• High efficacy in handling unbounded search spaces in practice

Notation and Preliminaries
ES Mutation Mechanism:

®𝑥NEW = ®𝑥CURR + ®𝑧 ∈ Z𝑛

®𝑧 drawn from a multivariate distribution.
Discrete Probability:

Pr{𝑧 = 𝑘} = 𝑝𝑘 ,
∑︁
𝑘

𝑝𝑘 = 1.0

Shannon entropy (unpredictability):

𝐻 := −
∞∑︁

𝑘=−∞
𝑝𝑘 log2 𝑝𝑘

Key Metrics:
ℓ1-norm (integer lattice distance):

∥®𝑧∥1 :=
𝑛∑︁
𝑖=1
|𝑧𝑖 |

The expectation is the mean step-size

𝑆 := E [∥®𝑧∥1] =
𝑛∑︁
𝑖=1

E [|𝑧𝑖 |1] ,

due to the stochastic independence.
For 𝑛 i.i.d. variables: 𝑆 = 𝑛 · E [|𝑧1 |].

Working Hypothesis and Research Questions
Hypothesis: the ℓ1-norm is the natural measure over the
integer lattice.
The role of (truncated) Gaussianity remains unclear.
Can we leverage established ℓ2-norm continuous results?
Research Questions:

1 Geometry & Entropy: How to design mutations
respecting ℓ1 geometry?

2 Correlated ℓ1-based mutations: Can we construct
correlated preserving dependencies?

ℓ1 vs. ℓ2 Geometry

— ℓ2 ball — ℓ1 ball

Integer Mutation Distributions
Discrete Uniform (DU) Shifted Binomial (SB) Truncated Normal (TN) Double Geometric (DG)

Range: {−𝑁, ..., 𝑁} Range: {−𝑁/2, ..., 𝑁/2} Support: Z; 𝑧 ∼ N(0, 𝜎2) Support: Z; 𝑧 = G(𝑝)−G(𝑝)
Pr{𝑋 = 𝑘} = 1

2𝑁+1 Pr{𝑌 = 𝑘} =
( 𝑁

𝑘+𝑁2

)
2−𝑁 Pr {round(𝑧) = 𝑘}

= 1
2

[
erf

(
𝑘+0.5√

2𝜎

)
− erf

(
𝑘−0.5√

2𝜎

)] Pr{𝑧 = 𝑘} = 𝑝

2−𝑝 (1 − 𝑝)
|𝑘 |

Step: 𝑆𝐷𝑈 = 𝑛
𝑁 (𝑁+1)
2𝑁+1 Step: 𝑆𝑆𝐵 ≈ 𝑛

√︃
2𝑁
𝜋

Step: 𝑆𝑇𝑁 ≈ 𝑛𝜎
√︃

2
𝜋

Step: 𝑆𝐷𝐺 = 𝑛
2(1−𝑝)
𝑝(2−𝑝)

Entropy: 𝐻 = log2(2𝑁 + 1) Historical: First ES (1964) Most common in IESs ℓ1-optimal (Rudolph)
Max entropy on range via Galton boards ℓ2-based geometry Max entropy given 𝑆

Empirical Mean of ℓ1 vs. ℓ2: TN & DG
Populations of randomly generated 𝑛-dimensional integer vectors with an increasing
scale of individual step-sizes, that is 𝑆𝑖 = 𝐾 · 𝑖, subject to a factor 𝐾 ∈ {1, . . . , 50}:

Correlated Integer Mutations via Rotations
Challenge: ℓ1-norm-preserving rotations are
unrealistic in the general case. How to correlate?
Approach: Apply Schwefel’s rotations and round:

®𝑧𝑐 = round
©­«
𝑛−1∏
𝑖=1

𝑛∏
𝑗=𝑖+1

R(𝛼𝑖 𝑗)ª®¬ · ®𝑧𝑢


®𝛼: 𝑛(𝑛 − 1)/2-dimensional vector of angles.

Implementation:
rotateInt (®𝑧, ®𝛼)

for 𝑗 = 1, . . . , 𝑛 · (𝑛 − 1)/2 do
®𝑧 ←− R(𝛼 𝑗)®𝑧

end
return {round (®𝑧)}

Input: uncorrelated ®𝑧𝑢, angles ®𝛼
Output: correlated integer ®𝑧𝑐

Rotation matrix R(𝛼𝑘ℓ): 𝑟𝑘𝑘 = 𝑟ℓℓ = cos(𝛼𝑘ℓ), 𝑟𝑘ℓ = −𝑟ℓ𝑘 = − sin(𝛼𝑘ℓ) (identity otherwise)

2D Population Visualization (population size = 104)
Heatmaps depicting populations of rotated 2D samples with 𝑆1 = 1, 𝑆2 = 2 and 𝜃 ∈ {0, 𝜋8 ,

𝜋
4 ,
𝜋
2 } (set in this

order clockwise - see titles). [LEFT, green]: TN distribution, [RIGHT, red]: DG distribution.

ℓ1-norm and Statistical Correlation under Rotations

Shannon’s 1D Entropy vs. Mean Step-Size: DG is the Maximizer
Key Finding: The entropy function of
single-variable distributions over the
spectrum of 𝑆 reveals that DG achieves
maximum entropy while controlling the
defining step-size.

This relationship demonstrates the
optimality of the DG method in terms
of information-theoretic measures,
numerically validating Rudolph’s result.

Estimated Entropy of 2D Samples: Correlated & Uncorrelated

Numerical Validation: Unbounded Integer Quadratic

minimize®𝑥 1
𝑐
[(®𝑥 − ®𝜉0)𝑇H(®𝑥 − ®𝜉0)]

subject to: ®𝑥 ∈ Z𝑛

(H-1) Discus: (𝐻disc)11 = 𝑐, (𝐻disc)𝑖𝑖 = 1 (𝑖 > 1)
(H-2) Cigar: (𝐻cigar)11 = 1, (𝐻cigar)𝑖𝑖 = 𝑐 (𝑖 > 1)
(H-3) RotEllipse: 𝐻RE = O𝐻ellipseO−1

(H-4) HadEllipse: 𝐻HE = S𝐻ellipseS−1

Conditioning: 𝑐 ∈ {10, 102, . . . , 106} • Total: 24 instances/dimension

Results of the Standard-IES per 64D
Separable Nonseparable

Key findings:
• uncorrDG dominates separable problems
• corrDG dominates nonseparable problems
• DG-based IESs consistently outperform TN-based

Summary and Outlook
Key Contributions:
• Theoretical: Established that integer optimization benefits from ℓ1-norm

symmetries rather than classical ℓ2-invariance, motivating geometry-respecting
mutation operators for discrete spaces
• Algorithmic: Extended DG distribution to correlated integer sampling, achieving

highest entropy among tested kernels for given step lengths, thus maximizing
exploratory power
• Empirical: Demonstrated superior convergence on IQP benchmarks, though

revealing universal stagnation near optima - a phase-transition-like phenomenon
requiring further investigation

Future Directions: Runtime analysis of stagnation mechanisms • Derandomized
step-size adaptation (CMA-ES integration) • NK landscapes and MI testbeds •
Boundary-aware mutations for constrained problems
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