
Pareto Landscapes Analyses via Graph-Based
Modeling for Interactive Decision-Making

Ofer M. Shir1,2?, Shahar Chen1,3, David Amid1, Oded Margalit1,
Michael Masin1, Ateret Anaby-Tavor1, and David Boaz1

1 IBM Research, Haifa, Israel
2 Computer Science Department, Tel-Hai College, Upper Galilee, Israel

3 Computer Science Department, Technion - Israel Institute of Technology

Abstract. We consider two complementary tasks for consuming opti-
mization results of a given multiobjective problem by decision-makers.
The underpinning in both exploratory tasks is analyzing Pareto land-
scapes, and we propose in both cases discrete graph-based reductions.
Firstly, we introduce interactive navigation from a given suboptimal ref-
erence solution to Pareto efficient solution-points. The proposed traver-
sal mechanism is based upon landscape improvement-transitions from
the reference towards Pareto-dominating solutions in a baby-steps fash-
ion – accepting relatively small variations in the design-space. The Ef-
ficient Frontier and the archive of Pareto suboptimal points are to be
obtained by population-based multiobjective solvers, such as Evolution-
ary Multiobjective Algorithms. Secondly, we propose a framework for
automatically recommending a preferable subset of points belonging to
the Frontier that accounts for the decision-maker’s tendencies. We devise
a line of action that activates one of two approaches: either recommend-
ing the top offensive team – the gain-prone subset of points, or the top
defensive team – the loss-averse subset of points. We describe the entire
recommendation process and formulate mixed-integer linear programs
for solving its combinatorial graph-based problems.

Keywords: Pareto landscapes, multi-criterion decision-making, design-
space, interactive recommender systems, prospect theory, graph traver-
sals, vertex covering, submodular functions.

1 Introduction

The goal of multiobjective optimization is to output the Efficient Frontier and
the Pareto Optimal Set, whose points are mathematically indifferent with re-
spect to each other. Attaining the Efficient Frontier of a multiobjective optimiza-
tion problem can be either treated by means of algorithms utilizing mathemat-
ical programming solvers, e.g., the so-called Diversity Maximization Approach
[1] employing specific solvers, or approximated by population-based heuristics,
such as Evolutionary Multiobjective Optimization Algorithms [2]. The selection

? The first two authors contributed equally to this work.



2

Nomenclature
Term Description Notation
model multiobjective optimization model M
Efficient Frontier non-dominated points in the m-dimensional objective space F
Pareto Optimal Set pre-images of the Frontier in the search space X
archive history of solution-points obtained during optimization A
solution a feasible solution to the given multiobjective problem ψ
reference a solution provided by the user to become an initial point ψ0

transition an ordered pair of solution-points a and b (a b)
path a sequence of transitions from the reference to the Frontier p, P[:, :]
metric symmetric distance metric amongst solution-points ∆
hop limit maximally acceptable distance for transitions δmax

preference a preference relation between two solution-points �pref

graph a graph with vertices V and directed edges E G = {V,E}
edge a directed edge between node u to node v with weight ω (u v, ω)

phase, entitled Multi-Criterion Decision Making (MCDM) [3], is to be subjec-
tively driven by the human decision-maker (DM) based upon their preferences.
This phase may involve exploration of the Frontier, and eventually, the chal-
lenge in selecting a solution is to account for gains and losses while adhering
to the personal preferences. The current work is concerned with devising auto-
mated exploration recipes in two directions: (i) utilizing a traversal mechanism
to discover (possibly suboptimal) points that may be of interest because of their
design-space specification, and (ii) identifying recommended subsets of solution-
points that meet the DM’s tendencies. We propose here a common ground to
treat both exploration tasks, that is, by reducing the challenge of landscape
analyses to discrete graph-based formulations. While the traversal challenge is
reduced to a shortest path problem on the archive of suboptimal solutions, the
recommendation challenge is reduced to a vertex covering problem of an out-
ranking graph. In the latter we show how to transform the analysis problem
into mixed-integer linear programs as well as a formulation of maximizing a sub-
modular function over the graph vertices. The Nomenclature for this paper is
outlined in the enclosed table.

Related Work In essence, work related to the considered tasks lies in the ar-
eas of MCDM and interactive recommender systems. Preference elicitation and
derivation of expected utility functions is rooted in the Multi-Attribute Utility
Theory [4]. Analytical Hierarchy Process [5] introduced a questioning protocol
for manual decision-making, based upon pairwise comparisons, and derived a
calculation procedure featuring matrix algebra. The ELECTRE family of meth-
ods [6], on the other hand, defined a preference relation amongst solution-points,
and proposed a procedure to construct a preference graph – these methods even-
tually recommend to the DM the solution-points that lie in this graph’s kernel.
Various approaches for reducing the cardinality of the Efficient Frontier and
computing a subset of the ”most interesting” solution-points have been pro-
posed from different angles, e.g., in preference ordering [7] or in smart filtering
[8]. Interactive recommender systems that suggest candidate solution-points to
the user while accounting for multiple attributes (objectives) have long been pro-
posed, e.g., in the realm of e-Commerce [9]. These methods typically infer the
user’s preferences that are communicated via so-called critiques in order to ad-



3

just the next suggested solution. Another approach, that is somewhat related to
our proposed traversal, is the so-called Pareto Navigator [10], which interactively
incorporates user preferences to the course of optimization. Finally, employing a
graph-based approach to navigate amongst suggested solution-points has been
proposed by Hadzic and O’Sullivan [11]. Their study aimed to select a product
from a catalogue (e-Commerce) without considering explicit Pareto relations,
and suggesting candidate solution-points by analyzing the graph.

2 Traversing over Pareto Landscapes

In order to promote acceptance of machine-driven optimization results by DMs
and gain their confidence in such candidate solutions, we present here a novel ex-
ploration framework for the multiobjective domain, which constitutes a traversal
over Pareto landscapes. The primary idea behind the Pareto traversal is to offer
a hopping mechanism that begins at the DM’s suboptimal reference point and
terminates at the Efficient Frontier or prior to that, at any point satisfactory
to the DM. In short, each hop is directed towards Pareto-improvements, and
at the same time is meant to constitute a baby-step in the design (decision)
space, i.e., transitions are improvements in the prescribed objectives but are
only relatively small variations with respect to the current candidate design.
The rationale behind this constraint is the fact that human perception tends to
adjust better to small changes rather than to large. At the same time, a typ-
ical limitation on human mental resource upon reaching a decision [12] poses
a tradeoff between the need for baby-step adjustments to the available mental
resource (time and energy to decide).

The strict Pareto domination relation can be relaxed by means of a general-
ized preference relation between two solution-points. While we keep our formal
definition of the Efficient Frontier as the output of the optimization process, we
would like to consider a relaxed preference relationship amongst solution-points
in the archive. Examples of such relations are described in [13], entitled therein
(ε, λ)-dominance or the preference-elicited �Θ relation. In what follows, we shall
denote a preference relation in this framework as �pref, and it is assumed to be
prescribed by the user. The careful reader would note that this relation is not
necessarily a partial order, and a preference graph that is based upon �pref-
relations may possess cycles.

2.1 Proposed Method I: Batch Navigation

A successful Pareto optimization process yields the Efficient Frontier as well
its Pareto Optimal Set, but may support in parallel the archiving of all its
intermediate feasible solutions along this process. The obtained archive, whose
non-dominated set is the Efficient Frontier, is likely to contain a vast majority of
dominated solutions with diverse ranks. This archive is of particular interest
to the current study, since it encompasses the potential to bridge
between a reference solution to Pareto optimal solutions by means



4

shortestPathToFrontier (reference ψ0, Frontier F , Archive A,
metric ∆, preference �pref, lim δmax)

1: G ←−constructTraversalGraph(A,∆,�pref, δmax)
2: {D, P} ←− G.Dijkstra(ψ0,F)
3: idx←− arg min (D) /* minimal accumulated distance to the Frontier */
4: return {P [idx] , idx}

of a guided hopping mechanism. Our proposed Pareto navigation system
offers 3 optional tracks of guidance to the DM. In all cases, a symmetric distance
metric is provided as input:

1. Closest : given a reference solution and an archive, return a Pareto efficient
solution that is closest to the reference point in the scope of the design space.

2. Shortest : given a reference solution, an archive, a preference relation �pref,
and the hop limit δmax, construct the directed graph of all possible pathways,
and return the shortest path from the reference to the Frontier. The shortest
path can be either defined as the shortest sequence of hops to the Frontier
(in terms of number of moves), or as the smallest accumulated distance to
the Frontier. The design distance between each pair of consecutive solutions
is bounded by δmax. See shortestPathToFrontier for the pseudo-code.

3. Classic : given a reference solution, an archive, a preference relation, a
maximal distance, and maximal number of suggested solutions, iteratively
return a set of dominating solutions, close enough to the reference (bounded
by δmax in the design space), lying on paths to the Frontier and of which the
DM is requested to select. See traverseToFrontier for the pseudo-code.

We discuss in what follows the various components of the Classic traversal.

Shortest Path Calculations We view the archive of the optimization process
A as a directed graph: each solution-point constitutes a vertex, and there is an
edge from solution-point a to solution-point b if and only if b �pref a holds and
the design distance between a and b does not exceed δmax. For instance, if �pref is
taken to be the standard Pareto domination – and if ∆ (a, b) ≤ δmax and b dom-
inates a both hold – then the graph will possess an edge (a b, ∆ (a, b)). See
constructTraversalGraph for the pseudo-code. By the current construction, a
valid sequence of solutions to the Frontier is a valid path from the source vertex
(ψ0, the reference solution provided by the user) to one of the Frontier vertices,
i.e., a solution-point in F . In practice, we consider Dijkstra’s shortest path al-
gorithm [14], utilized on a directed graph G, which receives a source ψ0 and the
Efficient Frontier vertices F . Its implementation returns the shortest paths from
the source to each of the vertices in F , with both time and space complexity

of O
(
|A|2

)
. Its output, denoted in our notation as G.Dijkstra, comprises the

calculated distances D and the description of the paths P. As mentioned earlier,
G may possess cycles depending upon the definition of �pref, e.g., a cycle of



5

constructTraversalGraph (Archive A, metric ∆, preference �pref, lim δmax)

1: V ←− A, E ←− ∅
2: for i = 1 . . . |A| do
3: for j = 1 . . . |A| do
4: if A [i] �pref A [j] ∧ ∆ (i, j) ≤ δmax then
5: E ←− E ∪ (j  i, ω = ∆ (i, j))
6: return G = {V,E}

indifferent solution-points when �pref is a weak Pareto-dominance relation. In
such cases, Dijkstra’s algorithm is still guaranteed to calculate the shortest paths
to F , but a feature to eliminate revisiting nodes iteration-wise is then needed
(since Dijkstra is executed independently in each iteration), e.g., by means of
Tabu-list elimination. A discussion on paths calculation efficiency in large-scale
archives will follow.

The Interactive Hopping Mechanism Each iteration is meant to hold a
specific solution, ψt, starting with the original reference ψ0 at the beginning.
At iteration t, the proposed method presents several candidate hops, and more
specifically, it presents a limited number of solutions (Nmax at most) that meet
all the following 3 requirements:

1. Satisfying the preference relation �pref with regard to ψt (objective-wise)
2. Being within δmax from ψt (design-wise with respect to ∆)
3. Frontier-reachable: on a pathway of valid hops (i.e., via nodes that satisfy

(1)+(2)) to the Efficient Frontier

The peak of each iteration is reached when the DM is asked by the machine to
select the next hop within the proposed set, which we denote as HG ; this step
is entitled getDMSelection: ψt+1 ←− getDMSelection (HG (ψt)). Note that ψt
may alternatively be defined as a set, rather than an individual solution, and
the procedure can be adapted accordingly. A set perspective may suit certain
DMs that are capable of simultaneously consuming multiple pathways.

Selection Criteria When calculating the shortest paths from the current
solution-point ψt to the Frontier F , as in traverseToFrontier, attention must
be paid to the selection criterion amongst the paths. This is of particular rele-
vance in scenarios where a large number of pathways exist, and the interaction
with the DM should comprise a relatively small number of representative candi-
dates. The default selection criterion (line 6 of traverseToFrontier) considers
the minimization over the accumulated design space distance between ψt to F
and the selection of the top Nmax minimizers. While this criterion constitutes
the primary motivation behind this newly proposed technique, there could be
alternative criteria, or secondary criteria that would follow it. Possible ideas may
comprise minimizing the total number of hops to the Frontier (i.e., considering



6

traverseToFrontier (reference ψ0, Frontier F ,Archive A,
metric ∆, preference �pref, lim δmax, suggestions Nmax)

1: G ←−constructTraversalGraph(A,∆,�pref, δmax)
2: t←− 0, p←− ∅
3: repeat
4: {D, P} ←− G.Dijkstra(ψt,F) /* obtain distances and paths to F */
5: I ←−sort(D, ’ascend’) /* hold the post-sorting permutation indices */
6: HG (ψt)←− {v | v ∈ P [1, I (1 : Nmax)]}
7: ψt+1 ←−getDMSelection(HG (ψt)) /* get input from the user */

8: p [t]←− (ψt  ψt+1)
9: t←− t+ 1

10: until terminatedByDM()
11: print(p)
12: return ψt

the shortest path subject to graph’s edge lengths uniformly set to 1), maximiz-
ing the overall improvements in all objectives (e.g., considering a global utility
of all objective functions and accounting for its largest ascend), maximizing the
design diversity in the target solution-points on the Frontier, or maximizing the
objective diversity amongst the Nmax selected points. The careful reader may
foresee scenarios in which no paths exist per certain δmax values. Alternatively,
the possibility of paths that comprise too many hops also exists. In both cases,
we propose an interactive approach that may either iteratively adapt δmax based
on feedback from the user, self-adapt it according to a heuristic, or hybridize the
two approaches. At the same time, scenarios in which the local neighborhood
of the current solution-point possesses an excessive number of candidates may
arise. In these scenarios, we propose to apply secondary selection criteria in order
to trim its size.

Space-Complexity in Large-Scale Archives A practical problem arises
when the graph cardinality becomes excessively large (e.g., order of 20000 nodes).
In order to address this issue, we aimed to exploit the tradeoff between mem-
ory and run-time and implemented a lighter version of Dijkstra that does not
hold the entire graph in memory but rather calculates edge lengths on-the-fly.
Consequently, the space complexity is reduced to O (|A|) in comparison to

O
(
|A|2

)
in the original algorithm. On the other hand, the graph edges are gen-

erated during the execution of the function, and therefore the graph construction
is also performed more than once. Assuming the graph construction runs in t1

seconds, and Dijkstra runs in t2 seconds (both are O
(
|A|2

)
), then k executions

of Dijkstra-Light will take k · (t1 + t2), instead of t1 + k · t2. Let c = t2
t1

denote
the run-time ratio between graph construction and Dijkstra execution. Thus we
obtain:

k · (t1 + t2)

t1 + k · t2
=
k · (c+ 1)

1 + k · c
<
k · (c+ 1)

k · c
= 1 +

1

c
. (1)



7

onlineTraversal (model M, reference ψ0, metric ∆, lim δmax)

1: t←− 0
2: p←− ∅
3: repeat
4: R ←−formMO(M, ψt,∆, δmax) /* formulate a local multiobjective problem */

5: NG (ψt)←−solveLocal(R)

6: ψt+1 ←−getDMSelection(NG (ψt)) /* get input from the user */

7: p [t]←− (ψt  ψt+1)
8: t←− t+ 1
9: until terminatedByDM()

10: print(p)
11: return ψt

In practice, graph construction tends to be significantly faster than Dijkstra
execution, implying a loss of at most factor-2 in run-time with our so-called
Dijkstra Light. Other heuristic techniques to treat large-scale archives may com-
prise filtering-out the following subsets: (a) non-dominating archive solutions
(solutions that do not Pareto dominate the reference solution are not reachable
and thus should be excluded from the graph), (b) unreachable vertices (i.e., so-
lutions that are not reachable within δmax steps from ψ0), and (c) vertices that
do not belong to paths ending on the Frontier F .

An illustration of the batch navigation process is provided in Fig. 1 on a
5-objective problem by means of Parallel-Coordinates visualization.

2.2 Proposed Method II: Online Navigation

This approach does not perform any calculations in advance, but rather solves
the optimization model on-the-fly with interactive guidance by the DM. In what
follows, reference is made to the pseudo-code entitled onlineTraversal. Here,
a multiobjective optimization model M is provided as input to the algorithm,
which then dynamically formulates a variant model R (line 4) in each iteration
and solves it (line 5) on-the-fly to obtain the local Efficient Frontier with regard
to the current solution-point ψt. The locality of the attained solutions in the
design space has to satisfy the constraints prescribed by R, e.g., ∆ (ψt,x) ≤
δmax. An example for a multiobjective optimization approach that accounts for
decision space constraints was reported in [15]. The selection of the decision
maker is recorded (line 6) and becomes the solution-point of the consecutive
iteration.

3 Automated Recommendation

In this section we are interested in formulating an automated methodology for
recommending specific solution-points within the Efficient Frontier with minimal



8

Fig. 1: A realization of the batch navigation process for a 5-objective minimiza-
tion problem, depicted by means of Parallel Coordinates, with arbitrary units.
The dotted lines represent the already traveresed path, whereas the solid blue
lines represent two candidate solution-points being proposed to the DM at the
current iteration. Furthermore, the blue solid thick line represents the currently
examined solution-point, and the green solid thick lines are solution-points that
may be reached from the examined option via calculated feasible pathways.

a priori information elicited from the DM. The Efficient Frontier is assumed
to be computed in a satisfactory manner in advance and to be provided as
input to the proposed process (Generate-First-Choose-Later fashion). One of the
principal directions of this study is the consideration of Prospect Theory [16],
whose core involves two perspectives, namely gain-prone versus loss-aversive, in
human decision-making. While being gain-prone and striving to maximize profit
is the economically rational perspective, it is argued that being loss-aversive
and avoiding temporary losses/risk at any cost often takes-over human decision-
making. Here, the general idea is to adopt this consideration and form two tracks
of recommendation – loss-averse (LA) and gain-prone (GP) perspectives – and
introduce them to recommender systems in MCDM. We coin terms, which are
borrowed from American Football, and consider respectively two teams: the LA
team, formed by the solution-points excelling in defense, alongside the GP team,
formed by the solution-points excelling in offense. This partition to tracks is not
revealed to the DMs, and the recommender system is to select the appropriate
track according to their elicited tendencies. Given an Efficient Frontier of size N ,
we propose to either consider it as a whole or partition it to clusters, and treat the
tasks of either global or local recommendations, respectively. The partitioning
of the Efficient Frontier, by means of unsupervised clustering, is to be followed
by the identification of so-called winners per each partition, yielding overall n
recommended solutions. The framework is summarized by the following steps:



9

1. Partitioning the Efficient Frontier, F =
{
f (i)

}N
i=1

, into κ clusters of sizes
N1, N2, . . . , Nκ.

2. For each cluster i, constructing a complete directed graph with Ni ver-
tices, each representing a solution-point. Pairwise outranking calculations
obtain the degree to which a solution is preferred over another (if at all),
and consequently, a weighted edge is constructed between them directed to-
ward the outranked solution. The weight, we ∈ [0, 1], quantifies the degree
of preference of one solution over the other, by construction. The calcula-
tion of this degree is inspired by Fuzzy Logic K-Optimality [17], and certain
variants of the ELECTRE family of methods [6].

3. Selecting a ”good subset” of vertices for each cluster, referred to as the
”winners” or the ”top team”.

Fig. 2 summarizes the entire recommendation process that we envision. Also,
see recommend for the pseudo-code of the proposed recommendation recipe.

Calibrate
Elicit D ’s PreferencesM

Multiobjective Recommendation Process

Compute Subset
Identify Recommended Set

Output/
Interact

Consider problem type and:
- Diagnose LA/GP tendencies
- Elicit preferences/dislike parameters:

Efficient Frontier

Recommendation Recipe:
- Cluster the Frontier
- Construct preferences graph
- Compute the top team

Fig. 2: Summary of the envisioned recommendation process. The current study
focuses on the subset attainment, whereas the calibration is not addressed here.

3.1 Clustering

Clustering is meant to reduce the complexity of dealing with a potentially large
Efficient Frontier into treatment of its semantically-derived subsets. We propose
to divide the Frontier into smaller regions and let the DM focus only on areas that
they find particularly interesting. We consider each cluster as an independent
set of solution-points, and recommend ni out of Ni solutions that reside in the
ith cluster ( ni

Ni
≈ n

N ). A possible realization is Lloyd’s k-means clustering [18].



10

recommend(Efficient Frontier F , numClusters κ, int mode)

1: Γ ←− cluster (F , κ)
2: for i = 1 . . . κ do
3: Gi ←− calcOutrankingGraph (F (Γ (i, :)))
4: if mode==GP then
5: Wi ←− selectOffensiveTeam (Gi)
6: else
7: Wi ←− selectDefensiveTeam (Gi)
8: return {Wi}κi=1 /* top teams per cluster */

calcOutrankingGraph(solutions F)

1: initialize pairwise preference matrix Ω = (ωi,j) ∈ R|F|×|F|, ωi,i = 0
2: V ←− F
3: E ←− ∅
4: for i = 1 . . . |F| do
5: for j = 1 . . . |F| do
6: switch (mode)
7: case K-OPT:
8: ωi,j ←− 1/min

k

(
f (i) ≺k f (j)

)
/* see Eq. 3 */

9: case ELECT-III:
10: ωi,j ←− σ

(
f (i), f (j)

)
/* see Eq. 4 */

11: case ELECT-IS:
12: ωi,j ←− maxs

(
f (i) �s f (j)

)
/* see Eq. 5 */

13: end switch
14: E ←− E ∪ (i j, w = ωi,j)
15: return G = {V,E} /* complete directed graph */

3.2 Outranking Relations: Pairwise Comparisons

As a second step, the machine performs a series of pairwise comparisons amongst
the solution-points in each cluster. Comparing two solutions a and b and deter-
mining what is the confidence level that a is preferable over b is somewhat a
simpler task than conducting global prioritization over a set of solutions. Thus,
we perform

∑
1≤i≤κ

2
(
Ni

2

)
pairwise comparisons (rather than 2

(
N
2

)
in the global

perspective, which is ∼ κ faster), and a directed weighted graph encompassing
this entire information is then constructed per each cluster. In essence, an edge
in this graph, directed from vertex a toward vertex b, represents the confidence
level regarding the assertion ”solution-point a is favorable over solution-point
b”. We consider three estimation techniques for quantifying such confidence lev-
els: one is based upon K-Optimality and Fuzzy Logic [17], while the other two
stem from the so-called ELECTRE-III and ELECTRE-IS techniques [6]. See
calcOutrankingGraph for the pseudo-code of the graph construction.



11

Preference Estimation with K-Optimality and Fuzzy Logic Following
[17], we adopt the k-dominance relation, which we shall define in what follows
concerning solution-points f (1) and f (2) subject to vector minimization. First,
consider the following functions,

nb

(
f (1),f (2)

)
≡
∣∣∣{i ∈ [0 . . .m]

∣∣∣f (1)
i < f

(2)
i

}∣∣∣
ne

(
f (1),f (2)

)
≡
∣∣∣{i ∈ [0 . . .m]

∣∣∣f (1)
i = f

(2)
i

}∣∣∣
nw

(
f (1),f (2)

)
≡
∣∣∣{i ∈ [0 . . .m]

∣∣∣f (1)
i > f

(2)
i

}∣∣∣
,

counting better/equal/worse coordinates in a pairwise vector comparison. Let
m denote the objective-space dimensionality, then the following straightforward
equality and inequality hold on any two different solution-points residing
on the Efficient Frontier: nb + ne + nw = m, 0 ≤ nb, ne, nw < m. We
employ Fuzzy Logic to relax this standard definition. When conducting pairwise
comparisons, accounting for the level of improvement between two solutions may
become an important factor. In order to encompass this aspect, the important
concept of fuzziness is discussed here in the form of fuzzy membership functions.
The definition of nb, ne and nw can be revisited upon consideration of the fuzzy
membership functions µb, µe and µw (note the aggregated subscripts):

n{b,e,w}

(
f (1),f (2)

)
≡

m∑
i=1

µ
(i)
{b,e,w}

(
f

(1)
i − f (2)

i

)
The specific shape of membership is to be decided upon, e.g., by setting it to
linear fuzzy membership functions. Given these {nb, ne, nw} measures, evaluated
by means of the direct or fuzzy notion, we would like to form hierarchy of sub-
classes of solutions within the Efficient Frontier. We state that solution-point
f (1) k-dominates solution-point f (2), denoted as f (1) ≺k f (2), if and only if

f (1) ≺k f (2) ⇐⇒ ne

(
f (1),f (2)

)
< m ∧

nw
(
f (1),f (2)

)
nb
(
f (1),f (2)

) ≤ k (2)

with 0 ≤ k ≤ 1. Accordingly, k-optimality can be then defined: given 0 ≤
k ≤ 1, v∗ is the k-optimum if and only if there is no other solution v, such
that v k-dominates v∗. Eq. 2 with k = 0 is essentially reduced to the formal
Pareto domination relation, i.e., all the solution-points on the Efficient Frontier
are 0-optimal in the strict (non-fuzzy) notion. We introduce the degree of k-
optimality of a given solution-point v as the maximal k for which v is k-optimal.
Hence, the ”resistance” of a given solution increases as its degree of optimality
increases, and therefore, a solution with a larger degree is more likely to be
preferred over others. In order to compare amongst solution-points, we define
the following pairwise preference function regarding solution-points a and b lying
on an Efficient Frontier (k > 0):

FK-OPT (a, b) =

{
1/mink (a ≺k b) if min non-empty

0 otherwise
. (3)



12

Preference Estimation with ELECTRE The ELECTRE family of tech-
niques [6] introduces a different approach for conducting automated pairwise
comparisons. Generally speaking, ELECTRE focuses on quantifying the degree
of loss/inferiority when comparing between solution-points a and b. Accordingly,
as the level of loss increases, the assertion that a is preferred over b weakens.
Here, the first value to be computed is the concordance, denoted as c(q) (a, b),
which is defined as the fraction of objectives in which the values in solution-point
a outrank the values in solution-point b with a tolerated error of q. This param-
eter, as others, may be utilized either with or without a coordinate subscript,
indicating that it is either per-coordinate or global, respectively. At the same

time, a discordance index d
(j)
(p,v) is defined as the complementary measure to the

concordance index; it is formulated for the jth coordinate, and it accounts for
losses between pj to vj . Losses beyond the latter parameter, which is entitled
the veto threshold, would eliminate the outranking assertion. In other words,

d
(j)
(p,v) ∈ [0, 1] is proportional to the loss in [−pj ,−vj ] – if the loss exceeds −vj

then dj = 1 and veto is applied; if the loss does not exceed −pj then dj = 0. We
are interested in two particular ELECTRE variants, as specified in what follows.

ELECTRE-III Here, the score for the assertion that a outranks b is defined
using a credibility index σ (a, b), which quantifies the certainty of that assertion:

σ (a, b) = c (a, b) ·
∏

j:d
(j)

(p,v)
(a,b)>c(q)(a,b)

1− d(j)
(p,v) (a, b)

1− c(q) (a, b)

We propose this index as a definition for a pairwise preference function:

FEL-III (a, b) = σ (a, b) (4)

ELECTRE-IS In this variant, on the other hand, a threshold s is given, and the
assertion that a outranks b is quantified by means of a boolean index, denoted
as a �s b, and holds if and only if{

c(q) (a, b) ≥ s
∀j d

(j)
(p,v) ≥ −v + (v − p) · w

(
s, c(q) (a, b)

) ,
where w

(
s, c(q) (a, b)

)
=

1−c(q)(a,b)
1−s . Equivalently to the k-optimality in Eq. 3,

we define a pairwise preference function:

FEL-IS (a, b) = max
s

(a �s b) . (5)

Outranking Aftermath A directed graph with edge weights possessing mini-
mal values of 0 (indicating that a is certainly not better than b) and otherwise
larger positive values (indicating the degree to which a is preferred over b) is then
constructed based upon one of the three approaches (Eqs. 3, 4 or 5). Note that



13

the outcomes of the three proposed pairwise preference functions are dependent
upon their parameter settings: calibrating the fuzzy membership functions, or
setting the parameters {pj , qj , vj} for ELECTRE is critical and is likely to be
problem-dependent. While the fuzzy scoring concept constitutes a strong tool,
the k-optimality approach as a whole seems to lack the consideration of the LA
perspective, but rather to strongly reflect the GP perspective. Also, the mea-
sures {nb, ne, nw} do not entirely estimate the DM’s utility function because
summation over losses versus gains does not capture well one’s preferences. On
the other hand, the ELECTRE techniques do capture the LA perspective and
possess the potential to identify incredibility. At the same time, when a solution-
point a is potentially preferred over b, the credibility index becomes inaccurate
– especially in cases of a few objectives (up to 4 or 5): minor loss variations may
change the concordance value (affecting s or σ, respectively).

A Novel Hybrid Perspective In order to address those effects and yet to
benefit from both methods, we propose to hybridize ELECTRE with fuzzy k-
optimality as follows: utilize ELECTRE to measure incredibility (accounting for
LA), and employ fuzzy membership functions to evaluate preference (accounting
for GP). Here is the proposed pairwise preference function:

FHYB (a, b) =

{
0 if σ (a, b) < θLA

FGP (a, b) otherwise
. (6)

We are now left with setting the LA threshold, θLA, and devise a fuzzy function
that estimates the GP preference. To this end, we propose a fuzzy linear function
that computes the average gain as an estimator for the DM’s utility function:

FGP (a, b) = min

{
0,
nb − nw
m

}
.

3.3 Selection

In the final step of our proposed framework we are to obtain the subset of
recommended solutions given the preferences graph. As a reference, in some
ELECTRE variants the recommended subset is chosen to be the graph kernel
K4, yet following a different graph construction. In our reckoning, kernels do not
directly fit the current framework for several reasons. Firstly, they are defined
for unweighted graphs while our preference graph is weighted ; secondly, their size
is fixed and the proposed recipe wishes to freely set the size of the recommended
subset; and finally, not every graph has a kernel (for instance, a directed cycle
with 2n− 1 vertices has an empty kernel). We consider two selection tracks:

1. GP track: solutions that ”win the most” form the top offensive team
2. LA track: solutions that ”lose the least” form the top defensive team

4 The kernel K of a graph is a subset of vertices that is both independent (that is,
if u, v ∈ K, then (u, v), (v, u) 6∈ E), and dominating (that is, for any v 6∈ K, there
exists u ∈ K such that (u, v) ∈ E).



14

A näıve line of action would examine the edges around each vertex, and cal-
culate its degree of optimality. In the GP track, it refers to the maximal gain
over other solution-points, i.e., deg(v) = maxe∈δout(v) we. In the LA track, it
refers to minimizing the maximal preference of another solution-point over it,
deg(v) = maxe∈δin(v) we. Eventually, solution-points with the highest degree are
recommended. The problem with this näıve line of action is that each solution
is independently scored, and the obtained subset is not likely to be diverse. We
would like to aim for a subset of recommended solutions being good representa-
tives of the Frontier, and we do not wish to solely rely on clustering in achieving
diversity. Next, we propose selection lines of action per each track.

GP Track: The Top Offensive Team Motivated by the graph kernel idea, we
attempt at finding a suitable definition to our recommendation case. Intuitively,
the definition of recommendation seems to be about selecting a solution subset
of a given size n, which optimally ”covers” all solution-points. Thus, we try to
relax the notion of a Dominating Set for weighted graphs as follows. For each
set D, we define the covering degree of each vertex as,

cvr (D, v) =

{
1 if v ∈ D

max
u∈D,(u,v)∈E

w(u, v) otherwise . (7)

We define the covering degree of each set as the total degree of all vertices,

cvr (D) =
∑
v∈V

cvr (D, v) . (8)

Although the independence property of the kernel is not explicitly expressed
here, the choice of maximization, rather than summation, in the definition of
cvr (D, v) prevents us from choosing two similar solutions (the marginal gain
of the second solution would be relatively small). An alternative approach that
we do not pursue here is to promote diversity by selecting solution-points with
”victories” in all coordinates (e.g., by satisfying the

∨m
i=1 operator). We associate

the recommended subset with the solution of the following optimization problem:

max
|D|≤n

cvr (D) (9)

We formalize this problem by means of an integer program. Given the desired
number of recommended solutions Nrec, let w(u, v) be the (preference) weighted
edge between solution-points u and v. We consider binary decision variables
sol[1.. |V |] to represent the selection of a solution-point (vertex), and binary
decision variables cover[1.. |V |][1.. |V |] where cover[v][u] = 1 translates to se-
lecting vertex v to cover vertex u. P1 in Fig. 4, which is a mixed-integer linear
program (MILP), realizes Eq. 9. Even though global domination over the entire
graph is guaranteed, there is a chance that the ”most dominant” solutions will
not be selected upon solving P1, as illustrated in Fig. 3: Evidently, the best
single vertex to be picked therein is b since it possesses a covering degree of 3.
At the same time, when targeting a subset of size 2, any solution that contains
b has a degree of at most 4.6, while the degree of {a, c} is 4.7.



15

Fig. 3: Illustrating a scenario in the
SubDominatingSet selection mode (Eq.
9) where the ”most dominating”
solution-point is not necessarily picked. a b c

0.6

0.750.6

0.75
1.0

1.0

Maximizing the Submodular Coverage Function in a Greedy Approach An alter-
native approach would be to generate D greedily, i.e., to select in each iteration
a vertex that maximizes the covering degree considering the solutions that were
already chosen. This may degrade the total quality of the subset, but would not
miss out the most dominant solutions. At the practical level, the greedy approach
possesses a straightforward implementation, featuring the following step for each
iteration k = 0 . . . Nrec − 1 (setting D0 ← ∅):

Dk+1 ← Dk ∪
{

arg max
v∈V

{
cvr

(
Dk ∪ {v}

)
− cvr

(
Dk
)}}

(10)

Since solving Eq. 9 constitutes maximization of a submodular monotone function,
utilizing Eq. 10 guarantees a (1− 1/e)-approximation to it [19].

LA Track: The Top Defensive Team An alternative selection of a rec-
ommended subset of solutions would be the defensive angle. Here, we aim at
identifying a subset of solutions, ideally diverse, which are not outranked alto-
gether by a single solution. For each resisting set R, we define the degree of each
vertex as

deg (R, u) =
∑

v∈R\u

w (u, v) . (11)

The resistance degree of each set is then defined as the maximal degree of all
vertices (i.e., the strongest offense on R):

res (R) = max
u∈V

deg (R, u) . (12)

[P1] maximize
∑
v∈V

∑
u∈V

w(u, v) · cover[v][u]

subject to:∑
v∈V

sol[v] ≤ Nrec∑
v∈V

cover[v][u] ≤ 1 ∀u ∈ V

cover[v][u] ≤ sol[v] ∀u ∈ V ∀v ∈ V

[P2] minimize t

subject to:∑
v∈V

sol[v] ≥ Nrec∑
v∈V

w(u, v) · sol[v] ≤ t ∀u ∈ V

Fig. 4: Mixed-integer linear programs realizing Eqs. 9 and 13.



16

In a min-max fashion, we describe the recommended resisting subset as the
solution to the following optimization problem:

min
|R|≥n

res (R) . (13)

Given the desired number of solutions Nrec, let w(u, v) be the weighted edge be-
tween solution-points u and v. We consider binary decision variables sol[1.. |V |]
to represent a selection of a solution-point, and a dummy continuous decision
variable t. P2 in Fig. 4 constitutes a realization to Eq. 13. A greedy approach
can also be employed in the defensive context. In an analogous way, it is easy
to compute the subset of solution-points having the strongest resistance degrees
with the following step for each iteration k = 0 . . . Nrec − 1 (setting R0 ← ∅):

Rk+1 ←− Rk ∪

arg min
v

∑
Rk∪{v}

w (u, v)

 (14)

A Note on Duality One may think that LA is a dual of GP in a sense that any
method to solve one problem can easily be transformed to the other (e.g., one
can switch the direction of the edges and get a solution to a GP problem with an
LA-solver). This intuition fails as the following example shows – assume a star
sub-graph (i.e., there exists a vertex with edges directed at all other vertices),
then a GP with Nrec = 1 would select it as a singleton and guarantee an optimal
solution regardless of the edges between all the other vertices. Upon reversing
the edges’ direction and solving for LA we would get some subset of the other
vertices depending upon the edges amongst them.

4 Summary

We introduced a novel interactive approach for traversing over multiobjective
landscapes post-optimization. The proposed traversal is meant to facilitate guided
exploration from a reference suboptimal solution to Pareto dominant solutions,
which constitute improvements in the objective-space and yet are within baby-
steps in the design-space. This proposed navigation, which was derived in both
batch and online versions, is targeted at gaining the DM’s confidence in the
machine-driven Pareto-optimal solutions. At the same time, the inherent tradeoff
between the need for adjusting to new conceptual designs to the limited mental
resource that characterize DMs was raised. We then proposed a novel MCDM
automated recommendation process that has the capacity to facilitate both LA
and GP states-of-mind. We derived multiple candidate formulations for describ-
ing the outranking relations amongst solution-points on the Efficient Frontier,
and devised a recipe for identifying the top subsets by means of combinatorial
optimization or greedy approximations. It should be stressed that determining
the DM tendency to be GP or LA is beyond the scope of the current work, and
is left for future work on the cognitive aspects of such recommender systems.



17

References

1. Masin, M., Bukchin, Y.: Diversity maximization approach for multiobjective opti-
mization. Operations Research 56(2) (2008) 411–424

2. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE Transactions on Evolutionary Computation 7(2) (2003) 117–132

3. Köksalan, M., Wallenius, J., Zionts, S.: Multiple Criteria Decision Making: From
Early History to the 21st Century. World Scientific (2011)

4. Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value
Tradeoffs. John Wiley and Sons, New York (1976)

5. Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource
Allocation. McGraw-Hill (1980)

6. Roy, B.: The Outranking Approach and the Foundations of ELECTRE Methods.
Theory and Decision 31 (1991) 49–73

7. Das, I.: A Preference Ordering Among Various Pareto Optimal Alternatives. Struc-
tural Optimization 18 (1999) 30–35

8. Mattson, C., Mullur, A., Messac, A.: Smart Pareto Filter: Obtaining a Minimal
Representation of Multiobjective Design Space. Engineering Optimization 36(4)
(2004) 721–740

9. Stolze, M., Ströbel, M.: Dealing with Learning in eCommerce Product Naviga-
tion and Decision Support: the Teaching Salesman Problem. In: Proc. of the 2nd
Interdiscip. World Congress on Mass Customization and Personalization. (2003)

10. Eskelinen, P., Miettinen, K., Klamroth, K., Hakanen, J.: Pareto Navigator for
Interactive Nonlinear Multiobjective Optimization. OR Spectrum 32(1) (2010)
211–227

11. Hadzic, T., O’Sullivan, B.: Critique Graphs for Catalogue Navigation. In: Pro-
ceedings of the 2008 ACM conference on Recommender systems. RecSys ’08, New
York, NY, USA, ACM (2008) 115–122

12. Levav, J., Heitmann, M., Herrmann, A., Iyengar, S.S.: Order in Product Cus-
tomization Decisions: Evidence from Field Experiments. Journal of Political Econ-
omy 118(2) (2010) 274–299

13. Marinescu, R., Razak, A., Wilson, N.: Multi-Objective Influence Diagrams. In:
Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI).
(2012) 574–583

14. Dijkstra, E.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1(1) (1959) 269–271

15. Zadorojniy, A., Masin, M., Greenberg, L., Shir, O.M., Zeidner, L.: Algorithms for
Finding Maximum Diversity of Design Variables in Multi-Objective Optimization.
Procedia Computer Science 8 (2012) 171–176 Conf. on Sys. Eng. Research.

16. Kahneman, D., Tversky, A.: Prospect Theory: An Analysis of Decision Under Risk.
Econometrica 47(2) (March 1979) 263–291

17. Farina, M., Amato, P.: Fuzzy Optimality and Evolutionary Multiobjective Opti-
mization. In: Evolutionary Multi-Criterion Optimization. Volume 2632 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2003) 58–72

18. Lloyd, S.: Least Squares Quantization in PCM. Information Theory, IEEE Trans-
actions on 28(2) (mar 1982) 129 – 137

19. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An Analysis of Approximations
for Maximizing Submodular Set Functions - I. Mathematical Programming 14(1)
(1978) 265–294


	Pareto Landscapes Analyses via Graph-Based Modeling for Interactive Decision-Making

