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There are more things in heaven and earth, Horatio,

than are dreamt of in your philosophy.

Prince Hamlet, Hamlet; William Shakespeare

Introduction

Optimal behavior of natural systems is frequently encountered at all lev-
els of everyday life, and thus has become a major source of inspiration for
various �elds. The discipline of Natural Computing aims at developing com-
putational techniques that mimic collective phenomena in nature that often
exhibit excellent behavior in information processing. Among a long list of
natural computing branches, we are particularly interested in the fascinat-
ing �eld of Organic Evolution, and its computational derivative, the so-called
Evolutionary Algorithms (EAs) �eld. By encoding an optimization problem
into an arti�cial biological environment, EAs mimic certain elements in the
Darwinian dynamics and aim at obtaining highly-�t solutions in terms of
the problem. A population of trial solutions undergo arti�cial variations and
survive this simulation upon the criteria posed by the selection mechanism.
Analogously, it is suggested that this population would evolve into highly-�t
solutions of the optimization problem.

The original goal of this work was to extend speci�c variants of EAs,
called Evolution Strategies (ES), to subpopulations of trial solutions which
evolve in parallel to various solutions of the problem. This idea stems from
the evolutionary concept of organic speciation. Essentially, the natural com-
puting way of thinking is required here to further deepen into Evolutionary
Biology Theory, and attain creative solutions for the arti�cial population in
light of the desired speciation e�ect. The so-called niching techniques are
the extension of EAs to speciation forming multiple subpopulations. They
have been investigated since the early days of EAs, mainly within the pop-
ular variants of Genetic Algorithms (GAs). In addition to the theoretical
challenge to design such techniques, which is well supported by the biologi-
cally inspired motivation, there is a real-world incentive for this e�ort. The
discipline of decision making, which makes direct bene�t out of the advent
of the global optimization �eld, poses the demand for the multiplicity of
di�erent optimal solutions. Ideally, those multiple solutions, as obtained by
the optimization routine, would have high diversity among each other, and
represent di�erent conceptual designs.

Aiming at largely devoting this research to niching in ES, we were also
originally interested in applying our proposed algorithms to experimental op-
timization. More speci�cally, we were aiming at applications in the emerg-
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2 Introduction

ing �eld of Quantum Control (QC). The latter o�ers an enormous variety of
high-dimensional continuous optimization problems, both at the theoretical
as well as the experimental levels. In that respect, it is potentially a heavenly
testbed for Evolutionary optimization, and particularly for niching methods.
This is due to some remarkable properties of QC landscapes, which typically
possess an in�nite number of optimal solutions, as proved by QC Theory.
We thus �nd the combination of research on niching and the application to
QC landscapes very attractive. After being exposed to this overwhelming
treasure of QC landscape richness, we decided to devote an independent part
of this dissertation to Quantum Control.

Symbolically, this interdisciplinary study forms a closed natural comput-

ing circle, where biologically-oriented investigation of organic evolution and
speciation helps to develop methods for solving applications in Physics in
general, and in Quantum Control in particular. By our reckoning, this sym-
bolism is even further strengthened upon considering the stochastic nature
of Evolutionary Algorithms; This process can be thus considered as throw-
ing dice in order to solve Quantum Mechanics, sometimes referred to as the
science of dice.

Thus, biologically inspired by organic evolution in general, and organic
speciation in particular, armed with the real-world incentive to obtain multi-
ple optimal solutions for better decision making, we hereby begin our journey
from diversity in nature to conceptual designs in Quantum Control.

This dissertation therefore consists of two parts: Part I introduces a
niching framework to a set of state-of-the-art ES algorithms, namely Deran-
domized Evolution Strategies (DES), and focuses on testing the proposed
algorithms on arti�cial landscapes. Part II reviews the main aspects of
Quantum Control in the general context of global function optimization.
It then presents the experimental observation of Derandomized ES as well
as the proposed niching algorithms when applied to several QC systems,
both at the laboratory and at the numerical simulations levels. As far as
we know, this is the �rst time that Quantum Control search landscapes are
comprehensively introduced to the community of Computer Science.

Part I begins with presenting the algorithmic kernels of this study, De-
randomized Evolution Strategies. This is done in Chapter 1 by providing
the reader with the essential terminology of global optimization, reviewing
the fundamentals of the ES �eld, and eventually introducing explicitly, in
detail, the derandomized algorithms.

Upon developing a niching framework for Evolution Strategies, some pre-
liminary topics had to be addressed. We properly introduce the real-world
incentive for niching, namely the selection of conceptual designs by the de-
cision maker. Furthermore, we review elementary concepts of the Organic
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Speciation Theory, discuss the crucial aspect of population diversity within
ES, and �nally present a short overview of previously introduced niching
techniques. Chapter 2 aims at addressing those topics, and therefore it con-
stitutes an important preliminary study for the derivation of our niching
framework. Due to the highly interdisciplinary nature of the niching re-
search, this chapter presents a particularly high diversity of topics, which
are linked by niching.

In Chapter 3 we present our proposed framework of niching within De-
randomized ES. We describe it in detail, and thereafter test it on a suite of
multimodal arti�cial landscapes. We analyze the numerical observation, and
discuss the algorithmic performance.

Chapter 4 extends the framework of Chapter 3 to self-adaptive niche-
shape approaches, for solving the so-called niche radius problem. This is an
important topic in the �eld of niching, as it attempts to treat the challenge
of de�ning a generic basin of attraction without a-priori knowledge on the
landscape.

Another extension of our proposed niching framework, this time to the
�eld of Multi-Objective Optimization, is introduced in Chapter 5. As the
two �elds of niching and multi-criterion optimization, corresponding to mul-
timodal and multiobjective problems, respectively, have many aspects in
common, we show the feasibility of utilizing our niching framework in a
multi-objective approach. This concludes Part I of the thesis.

The goal that Part II aims to achieve is two-fold: Firstly, properly in-
troducing the main optimization aspects of the Quantum Control �eld, and
secondly, presenting our work on the optimization of a speci�c Quantum
Control problem, namely Dynamic Molecular Alignment. We thus begin
Chapter 6 with a detailed review of Quantum Control Theory and Experi-
ments. The review outlines fundamental concepts of Quantum Control The-
ory, and mainly focuses on theorems concerning the critical points of the
landscapes, as well as on landscape richness and multiplicity of optimal so-
lutions. It then presents Quantum Control Experiments, and discusses our
experimental setup for Part II.

Chapter 7 describes our investigation of two optimization problems corre-
sponding to Quantum Control systems of Second Harmonic Generation. We
conduct experiments on these optimization problems, by means of numerical
simulations as well as laboratory experiments, by employing speci�c Deran-
domized ES variants. It is the only chapter where we report on real-world
laboratory experiments, while the following chapters focus on numerical sim-
ulations exclusively.

Chapter 8 is devoted to the introduction of the rotational framework,
the fundamental framework upon which the Dynamic Molecular Alignment
problem is based. In that respect, this chapter can be considered as a gateway
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to our work on the alignment problem investigated in Chapter 9. Following a
detailed Quantum Mechanical description of the framework, Chapter 8 poses
the rotational population transfer optimization problem. It then presents our
numerical observation of the Derandomized ES employment to the problem,
and �nalizes the chapter with applying our proposed niching algorithms.

Chapter 9 reports in detail on our work on the Dynamic Molecular Align-
ment, which constitutes the main application in our research on Quan-
tum Control landscapes. It describes the alignment problem, and then
presents various optimization approaches that we employed in addition to the
straightforward application of Derandomized ES. These approaches include
a special parameterization method developed for this purpose, optimality
investigation of a simpli�ed variant, optimization subject to a dynamically
varying environment, multi-objective consideration of the problem, and, �-
nally, the application of niching.

We thereafter complete this journey by summarizing our main results
and by presenting promising directions for future research.

A Technical Note Due to technical printing considerations, several plots
from various chapters are concentrated in Appendix A. In these particular
cases, a plot is referred to in the text as Figure A.x.
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If it could be demonstrated that any complex organ existed,

which could not possibly have been formed by numerous,

successive, slight modi�cations, my theory would absolutely

break down.

Charles Darwin

Chapter 1

Evolution Strategies

1.1 Background

The paradigm of Evolutionary Computation (EC), which is gleaned from the
model of organic evolution, studies populations of candidate solutions under-
going variations and selection, and aims at bene�ting from the collective phe-
nomena of their generational behavior. The term Evolutionary Algorithms
(EAs) essentially refers to the collection of such generic methods, inspired
by the theory of natural evolution, that encode complex problems into an
arti�cial biological environment, de�ne its genetic operators, and simulate
its propagation in time. Motivated by the basic principles of the Darwinian
theory, it is suggested that such simulation would yield an optimal solution
for the given problem.

Evolutionary Algorithms [1] have three main streams, rooted either in
the United States or in Germany, during the 1960s: Evolutionary Program-

ming (EP), founded by L. Fogel in San-Diego [2], Genetic Algorithms (GAs)
founded by J. Holland in Ann Arbor [3, 4], and Evolution Strategies (ES),
founded by P. Bienert, H.P. Schwefel and I. Rechenberg, three students to
that time at the Technical University of Berlin (see, e.g., [5, 6, 7]).

Evolution Strategies for global parameter optimization, the general frame-
work of this study, is reviewed in this chapter. We start with laying out the
basic foundations and de�nitions.

1.1.1 The Framework: Global Optimization

Let us introduce the elementary terminology of a continuous real-valued pa-

rameter optimization problem [8]. The following de�nition excludes discrete
and mixed-integer problems. Given an objective function, also called the
target function,

f : S ⊆ Rn → R, S ≠ ∅

7



8 Chapter 1. Evolution Strategies

where S is the set of feasible solutions

S = {x⃗ ∈ Rn | gj(x⃗) ≥ 0 ∀j ∈ {1, ..., q}} , gj(x⃗) : Rn → R

subject to q inequality constraints gj(x⃗), the goal is to �nd a vector x⃗∗ ∈ S
which satis�es

∀x⃗ ∈ S : f(x⃗) ≥ f(x⃗∗) ≡ f∗ (1.1)

Then, f∗ is de�ned as the global minimum and x⃗∗ is the global minimum

location.
Due to

min{f(x⃗)} = −max{−f(x⃗)},

it is straightforward to convert every minimization problem into a maximiza-
tion problem. Thus, without loss of generality, we shall assume a minimiza-
tion problem, unless speci�ed otherwise.

A local minimum f̂ = f(ˆ⃗x) is de�ned in the following manner:

∃ϵ > 0 ∀x⃗ ∈ S :
∥∥∥x⃗− ˆ⃗x

∥∥∥ < ϵ⇒ f̂ ≤ f(x⃗)

Unimodality vs. Multimodality A landscape is said to be unimodal if
it has only a single minimum, and multimodal otherwise. It is called multi-
global if there are several minima with equal function values as the global
minimum.

Global Minimum in Practice: Characterization While there exists
a general criterion for the automatic identi�cation of a local minimum,
such as the zero gradient criterion, in practice there is no equivalent gen-
eral criterion for the global minimum [8]. The attempt to characterize it is
essentially equivalent to posing the multimodal optimization problem and
di�erentiating de facto between global and local minima. We outline here
a theoretical attempt to accomplish this characterization, by means of the
important concept of level sets [9, 10]. Given a level set,

Lf (α) = { x⃗| x⃗ ∈ S, f (x⃗) ≤ α} , (1.2)

it is subject to level set mapping, which de�nes its e�ective domain:

Gf = {α|α ∈ R, Lf (α) ̸= ∅} . (1.3)

Assuming that Gf is compact and closed, Lf (α) is said to be lower semi-
continuous (lsc) at the point ᾱ ∈ Gf if x⃗ ∈ Lf (ᾱ),

{
αi
}
⊂ Gf ,

{
αi
}
→ ᾱ

imply the existence of K ∈ N and a sequence
{
x⃗i
}
such that

{
x⃗i
}
→ x⃗ and

x⃗i ∈ Lf

(
αi
)
for i ≥ K.

Given this, the following is a su�cient condition for characterizing a
global minimum:
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Theorem 1.1.1. Let f be a real-valued function on S ⊂ Rn. If every x⃗ ∈ S
satisfying f (x⃗) = ᾱ is either a global minimum of f (·) on S or it is not a

local minimum of f (·), then Lf (α) is lsc at ᾱ.

Törn and Zilinskas concluded that the extension to multimodal domains
makes the optimization problem unsolvable in the general case, i.e., there is
no e�cient solution technique for obtaining the global minimum value (see
[8] pp. 6).

The Hessian and the Condition Number Given a real-valued twice

di�erentiable n-dimensional function f , the Hessian matrix of f(x⃗) is de�ned
as the matrix

H(f(x⃗)) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 (1.4)

If the second derivatives of f are all continuous, a condition which we shall
assume here, the order of di�erentiation does not matter, and thus the Hes-
sian matrix is symmetric. It is then worthwhile to introduce the condition
number of the Hessian, a scalar which characterizes its degree of complexity,
and typically determines the di�culty of a problem to be solved by optimiza-
tion methods. Let

{
ΛH
i

}n
i=1

denote the eigenvalues of the HessianH, and let
ΛH
min and ΛH

max denote its minimal and maximal eigenvalues, respectively.
The condition number of the Hessian matrix is de�ned by:

cond(H) =
ΛH
max

ΛH
min

≥ 1 (1.5)

Ill-conditioned problems are often classi�ed as such due to large condition
numbers (e.g., 1014) of the Hessian on their landscapes.

Separability Another de�ning property of problem di�culty is the sepa-
rability of the objective function (see, e.g., [11]). A function f : Rn → R is
called separable if it can be optimized by solving n 1-dimensional problems
separately:

argmin
x⃗
f (x⃗) =

(
argmin

x1

f (x1, . . .) , . . . , argmin
xn

f (. . . , xn)

)
1.1.2 Evolutionary Algorithms

Whereas ES and EP are similar algorithms and share many basic character-
istics [12], the principal di�erence between them and GAs is the encoding of
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Algorithm 1 An Evolutionary Algorithm
1: t← 0
2: Pt ← Init() {Pt ∈ Sµ: Set of solutions}
3: Evaluate(Pt)
4: while t < tmax do
5: Gt ← Generate(Pt) {Generate λ variations}
6: Evaluate(Gt)
7: Pt+1 ← Select(Gt ∪ Pt) {Rank and select µ best}
8: t← t+ 1
9: end while

the genetic information. Traditional GAs encode the genome with discrete
values (as in nature), whereas ES as well as EP do that with continuous
real-values. Moreover, ES and EP focused more on development of muta-
tion operators, while in classical GA research the recombination operator
received most attention. Today, GA, ES, and EP subsume under the term
Evolutionary Algorithms (EAs).

Here, we o�er an introductory generic description of an EA. The lat-
ter considers a population (i.e., set) of individuals (i.e., trial solutions), and
models its collective learning process. Each individual in the population is
initialized according to an algorithm-dependent procedure, and may carry
not only a speci�c search point in the landscape, but also some environmen-
tal information concerning the search. A combination of stochastic as well
as deterministic processes such as mutation, recombination, and selection,
dictate the propagation in time towards successively better individuals, cor-
responding to better regimes of the landscape. The quality of an individual,
or alternatively the merit of a trial solution, are determined by a so-called
�tness function, which is typically the objective function or its rescaling.
Thus, certain individuals are favored over others during the selection phase,
which is based upon the �tness evaluation of the population. The selected
individuals become the candidate solutions of the next generation, while the
others die out.

More explicitly, an EA starts with initializing the generation counter t.
After generating the initial population with µ individuals in S, a set Gt of λ
new solutions is generated by means of mutation and possibly recombination.
The new candidate solutions are evaluated and ranked in terms of their
quality (�tness value). The µ best solutions in Gt ∪ Pt are selected to form
the new parent population Pt+1.

A generalized EA pseudocode is outlined in Algorithm 1.
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1.2 The Standard Evolution Strategy

Evolution Strategies were originally developed at the Technical University
of Berlin as a procedure for automated experimental design optimization,
rather than a global optimizer for continuous landscapes. Following a se-
quence of successful applications (e.g., shape optimization of a bended pipe,
drag minimization of a joint plate, and hardware design of a two-phase �ash-
ing nozzle), a diploma thesis [13] and a dissertation [14] laid out the solid
foundations for ES as an optimization methodology. There has been exten-
sive work on ES analysis and algorithmic design since then [7, 15, 16].

This section, which is mostly based on [1] and [7], will describe the stan-
dard ES in detail. Section 1.2.1 will introduce notation and basic terminol-
ogy. Section 1.2.2 will present the (1 + 1) algorithm, which was originally
analyzed for theoretical purposes, but continued to play an important role in
several aspects of Evolution Strategy design. The self-adaptation principle
will be described in Section 1.2.3, while Section 1.2.4 will outline the ES
algorithm.

1.2.1 Notation and Terminology

The typical application domain of Evolution Strategies is the minimization
of non-linear objective functions of signature f : S ⊆ Rn → R. Given a
search problem of dimension n, let x⃗ := (x1, x2, ..., xn)

T ∈ Rn denote the
set of decision parameters or object variables to be optimized: It is de�ned
as an individual associated with a trial solution. In optimization problems,
which are of our main interest, it is then straightforward to de�ne the �tness
of that individual: It is the objective function(s) value(s) of x⃗, i.e., f (x⃗).

Evolution Strategies consider a population of candidate solutions of the
given problem. This population undergoes stochastic as well as determinis-
tic variations, with the so-called mutation operator, and possibly with the
recombination operator. The mutation operator is typically equivalent to
sampling a random variation from a normal distribution. Due to the contin-
uous nature of the parameter space, the biological term mutation rate can
be associated here with the actual size of the mutation step in the decision
space, also referred to as the mutation strength.

Explicitly, an individual is represented by a tuple of continuous real-
values, sometimes referred to as a chromosome, which comprises the decision
parameters to be optimized, x⃗, their �tness value, f (x⃗), as well as a set of
endogenous (i.e., evolvable) strategy parameters, s⃗ ∈ Rm.

The kth individual of the population is thus denoted by:

a⃗k = (x⃗k, s⃗k, f (x⃗k))

The dimension m of the strategy parameter space is subject to the desired
parameter control approach, to be discussed shortly. The endogenous pa-
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rameters are a unique concept for ES, in particular in the context of the mu-
tation operator, and they play a crucial role in the so-called self-adaptation

principle (see Section 1.2.3).
Strategy-speci�c parameters, such as the population characteristic pa-

rameters µ, λ, and the so-called mixing number ν, are called exogenous

strategy parameters, as they are kept constant during the simulated evolu-
tion. The mixing number determines the number of individuals involved in
the application of the recombination operator.

1.2.2 Motivation: The (1 + 1) Evolution Strategy

Rechenberg [6] considered a simple (1 + 1) Evolution Strategy, with a �xed
mutation strength σ, in order to investigate analytically two basic objec-
tive functions, namely the corridor model and the sphere model. From the
historical perspective, that study laid out the foundations for the theory of
Evolution Strategies.

Rechenberg derived explicitly the expressions for the convergence rate of
his (1 + 1) ES for the two models. By de�nition, neither self-adaptation nor
recombination were employed in this strategy. Given the probability of the
mutation operator to cover a distance k′ towards the optimum, p(k′), the
convergence rate φ is de�ned as the expectation of the distance k′ covered
by the mutation:

φ =

∫ ∞

0
p(k′) · k′ dk′ (1.6)

The expression for the optimal step-size for the two models was �rst derived.
It was observed to depend on the so-called success probability ps,

ps = P {f(Mutate {x⃗}) ≤ f(x⃗)} . (1.7)

By setting
dφ

dσ

∣∣∣∣
σ∗

= 0, (1.8)

the optimal step-sizes for the two models were calculated, yielding also the
optimal success probabilities. The obtained values were both close to 1/5,
regardless of the search space dimensionality. This led to the formulation of
the well-known 1/5th-success rule:

The ratio of successful mutations to all mutations should be 1/5.
If it is greater than 1/5, increase the standard deviation, if it is

smaller, decrease the standard deviation.

For more details see [1]. The implementation of the 1/5th-success rule within
the (1+1)-ES is given as Algorithm 2. As practical hints, ps can be calculated
over intervals of 10 · n trials, and the adaptation constant should be set
between the boundaries 0.817 ≤ c≪ 1.
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Algorithm 2 The (1 + 1) Evolution Strategy

1: t← 0
2: Pt ← Init() {Pt ∈ S: Set of solutions}
3: Evaluate(Pt)
4: while t < tmax do
5: x⃗(t) :=Mutate {x⃗(t− 1)} with step-size σ
6: Evaluate(P ′(t) := {x⃗(t)}) : {f (x⃗(t))}
7: Select {P ′(t) ∪ P (t)}
8: t← t+ 1
9: if t mod n = 0 then
10:

σ =


σ(t− n)/c if ps > 1/5
σ(t− n) · c if ps < 1/5
σ(t− n) if ps = 1/5

11: else
12: σ(t) = σ(t− 1)
13: end if
14: end while

It should be noted that 1/5th-success rule has been kept alive, and contin-
ued to play an important role in several aspects, including the construction
of the elitist strategy of the Covariance Matrix Adaptation ES algorithm
([17] and also see Section 1.4).

1.2.3 The Self-Adaptation Principle

Section 1.2.2 provided us with the motivation to adapt the endogenous strat-
egy parameters during the course of evolution, e.g., tuning the mutative
step-size according to the 1/5th-success rule. The basic idea of the self-
adaptation principle is to consider the strategy parameters as endogenous
parameters, that undergo an evolutionary process themselves. The idea of
coupling endogenous strategy parameters to the object variables can be found
in organisms, where self-repair mechanisms exist, such as repair enzymes and
mutator genes [18]. This allows an individual to adapt to the changing en-
vironment of its trajectory in the landscape, while keeping the potentially
harmful e�ect of mutation within reasonable boundaries. Hence, when muta-
tive self-adaptation is applied, there is no deterministic control in the hands
of the user with respect to the mutation strategy.

The crucial claim regarding ES is that self-adaptation of strategy param-
eters works [19]. It succeeds in doing so by applying the mutation, recom-
bination and selection operators in the strategy, and without the use of any
exogenous control. The link between strategy and decision parameters is
exploited, even if it is only indirect. Experiments upon which this claim was
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based had found several boosting conditions for self-adaptation to work, such
as recombination on strategy parameters, selection pressure within certain
bounds, and others.

1.2.4 The Canonical (µ/ν +, λ)-ES Algorithm

We describe here the speci�c operators for the standard Evolution Strategy,
sometimes referred to as the Schwefel approach, and provide the reader with
the implementation details.

Mutation

The mutation operator is the dominant variation operator within ES, and
thus we choose to elaborate in this section on its characteristics. As a retro-
spective analysis, we choose to begin with the outline of some general rules
for the design of mutation operators, as suggested by Beyer [15]:

1. Reachability. Given the current generation of individuals, any other
search point in the landscape should be reached within a �nite number
of mutation operations.

2. Unbiasedness. Variation operators in general, and the mutation op-
erator in particular, should not introduce any bias, and satisfy the
maximum entropy principle. In the case of continuous unconstrained
landscapes, this would suggest the use of the normal distribution.

3. Scalability. The mutation strength should be adaptive with respect
to the landscape.

The ES mutation operator considers stochastic continuous variations,
which are based on the multivariate normal distribution. Given a normally-
distributed random vector, denoted by z⃗ = (z1, z2, . . . , zn)

T , the mutation
operator is then de�ned as follows:

x⃗NEW = x⃗OLD + z⃗ (1.9)

A multivariate normal distribution is uniquely de�ned by a covariance ma-

trix, C ∈ Rn×n, which is a symmetric positive semi-de�nite matrix, as well
as by a mean vector m⃗ ∈ Rn. Its probability density function (PDF) is given
by:

Φpdf
N (z⃗) =

1√
(2π)n detC

· exp
(
−1

2
(z⃗ − m⃗)T ·C−1 · (z⃗ − m⃗)

)
(1.10)

A random vector z⃗ drawn from a multivariate normal distribution, is denoted
by

z⃗ ∼ N (m⃗,C) .
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The ES mutation operator always considers a distribution with zero

mean, i.e., m⃗ = 0⃗, and thus the covariance matrix C is the de�ning com-
ponent of this operator. It is characterized by its (n · (n− 1)) /2 covariance
elements,

cij = cov(xi, xj) = cov(xj , xi) = cji,

as well as by its n variances,

cii ≡ σ2i = var(xi).

Overall, we have,

C =


var(x1) cov(x1, x2) · · · cov(x1, xn)

cov(x2, x1) var(x2) · · · cov(x2, xn)
...

...
. . .

...
cov(xn, x1) cov(xn, x2) · · · var(xn)


Essentially, the (n · (n+ 1)) /2 independent elements of the covariance ma-
trix are the endogenous strategy parameters that evolve along with the in-
dividual:

s⃗← C,

i.e., the strategy parameter vector s⃗ represents the covariance matrix C in
this case.

For the de�nition of the update rule for the strategy parameters, it is
convenient to represent the o�-diagonal elements of C by means of the rota-
tional angles between the principal axes of the decision parameters. Let αij

denote these angles,

cij = cov (xi, xj) =
1

2
(var(xi)− var(xj)) · tan (2αij) (1.11)

According to the self-adaptation principle, the covariance matrix elements
also evolve every generation. The adaptation of the covariance matrix ele-
ments is dictated by non-linear update rules: The diagonal terms, cii = σ2i ,
are updated according to the log-normal distribution:

σNEW
i = σOLD

i · exp
(
τ ′ · N (0, 1) + τ · Ni (0, 1)

)
(1.12)

and the o�-diagonal terms are updated through the rotational angles:

αNEW
ij = αOLD

ij + β · Nℓ (0, 1) (1.13)

where N (0, 1), Ni(0, 1), and Nℓ(0, 1) (ℓ = 1, . . . , (n · (n− 1)) /2) denote in-
dependent random variables, and where τ ∼ 1/

√
2
√
n , τ ′ ∼ 1/

√
2n , and

β = 5
180π are constants. After those two update steps, the covariance matrix

can be updated (o�-diagonal terms are calculated by means of Eq. 1.11).
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Figure 1.1: Mutation ellipsoids for n = 2, drawn from a general non-singular
covariance matrix, with c1,2 ∼ tan (2α1,2). Figure courtesy of Thomas Bäck.

Geometrical Interpretation The equal probability density contour lines
of a multivariate normal distribution are ellipsoids, centered about the mean.
The principal axes of the ellipsoids are de�ned by the eigenvectors of the
covariance matrix C. The lengths of the principal axes are proportionate
to the corresponding eigenvalues. Figure 1.1 provides an illustration for
mutation ellipsoids in the case of n = 2.

Correlated Mutations: Strategy Considerations Given a decision
parameter space of dimension n, a general mutation-control mechanism con-
siders the covariance matrix C, but may apply various di�erent strategies,
for computational considerations. There are three common approaches:

1. A covariance matrix proportionate to the identity matrix, i.e., having
a single free strategy parameter σ, often referred to as the global step-
size:

C1 = σ2 · I (1.14)

2. A diagonalized covariance matrix, i.e., having a vector of n free strat-
egy parameters,

(
σ21, σ

2
2, ..., σ

2
n

)T
, typically referred to as the individual

step-sizes:

C2 = diag
(
σ21, σ

2
2, ..., σ

2
n

)
(1.15)
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Figure 1.2: Equidensity probability contours for the three di�erent ap-
proaches with respect to a 2D landscape. Left: A single global step-size

(circles). Middle: n independent parameters (axis-parallel ellipsoids). Right:
(n · (n+ 1)) /2 independent parameters (arbitrarily oriented ellipsoids). Fig-
ures courtesy of Thomas Bäck [20].

3. A general non-singular covariance matrix, with arbitrary (n · (n+ 1)) /2
free strategy parameters:

C3 = (cij) (1.16)

Thus, the three approaches propose orders of O(1), O(n), or O(n2) strat-
egy parameters to be learned, respectively, at the cost of di�erent invariance
properties. Obviously, a single global step-size approach is very limited in its
ability to generate successful moves on a generic landscape. The generaliza-
tion into individual step-sizes assigns di�erent variances to each coordinate
axis, achieving an invariance with respect to translation, but still having
dependency on the coordinate system (no invariance with respect to rota-

tion). Finally, the most general approach with an arbitrary normal mutation
distribution introduces complete invariance with respect to translation and
rotation. Figure 1.2 o�ers an illustration for the three di�erent approaches,
on a given 2D landscape.

Recombination

Inspired by the organic mechanism of a meiotic cell division, where the ge-
netic material is reordered by means of crossover between the chromosomes,
the ES recombination operator considers sharing the information from up
to ν parent individuals [21]. When ν > 2, it is usually referred to as multi-
recombination. Unlike other Evolutionary Algorithms (e.g., GAs), the ES
recombination operator obtains only a single o�spring.

Due to the continuous nature of the parameters at hand, decision as
well as strategy parameters, there are two fundamental ways to recombine
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parents:

• Discrete recombination: one of the alleles is randomly chosen among
ν parents. Given a parental matrix of the old generation, AO =(
a⃗O1 , a⃗

O
2 , ..., a⃗

O
ν

)
, the new recombinant a⃗N is constructed by:(
a⃗N
)
i
:=
(
AO

mi

)
i
, mi := rand {1, .., ν}

• Intermediate recombination: the values of ν parents are averaged, typi-
cally with uniform weights. Essentially, this is equivalent to calculating
the centroid of the ν parent vectors:

(
a⃗N
)
i
:=

1

ν

ν∑
j=1

(
a⃗Oj
)
i

(1.17)

The recombination operator in the standard ES could be applied as follows:

1. For each object variable choose ν parents, and apply discrete recombi-

nation on the corresponding variables.

2. For each strategy parameter choose ν parents, and apply intermediate

recombination on the corresponding variables.

It should be noted that there are no generally known best settings of the
recombination operator, and the above are typical implementations of it.

Within the GA research, the building block hypothesis (BBH) (see, e.g.,
[22]) o�ered an explanation for the working mechanism of the crossover: The
combination of good, but yet di�erent, building blocks, i.e., speci�c portions
of the genetic encoding from di�erent parents, is supposed to be the key role
for propagating high �tness. The debate over this hypothesis has been kept
alive. In ES populations, the diversity decreases rapidly. Therefore, BBH is
unlikely to �t in a similar way it does in GA populations.

On the other hand, ES research has given rise to the genetic repair hy-
pothesis [23], stating that the common good properties of the di�erent par-
ents, rather than their di�erent features, are the key role in the working
mechanism of recombination. Also, recombination would typically decrease
the harmful e�ect of mutation and would allow for high step-sizes while
achieving the same convergence rates.

Selection

Natural selection is the driving force of organic evolution: Clearing-out an
old generation, and allowing its individuals with the �tness advantage to
increase their representation in the genetic pool of future generations. As
dramatic as it might sound, death is an essential part in this process.
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Algorithm 3 The (µ/ν +, λ) Evolution Strategy

1: t← 0
2: Pt ← Init() {Pt ∈ Sµ: Set of solutions}
3: Evaluate(Pt)
4: while t < tmax do
5: Select ν mating parents from Pt {Marriage}
6: a⃗′k(t) := Recombine {P (t)} ∀k ∈ {1, . . . , λ} {Recombination}
7: a⃗′′k(t) :=Mutate {a⃗′k(t)} ∀k ∈ {1, . . . , λ} {Mutation}
8: Evaluate(P ′(t) := {a⃗′′1(t), . . . , a⃗′′λ(t)}) ({f (x⃗′′1(t)) , . . . , f (x⃗′′λ(t))})
9: if (µ, λ)-ES then
10: Select {P ′(t)}
11: else if (µ+ λ)-ES then
12: Select {P ′(t) ∪ P (t)}
13: end if
14: t← t+ 1
15: end while

Evolution Strategies adopt this principle, and employ deterministic op-
erators in order to select the best µ individuals with the highest �tness, e.g.,
minimal objective function values, to be transferred into the next genera-
tion. Two selection operators are introduced in the standard ES using an
elegant notation due to Schwefel. The notation characterizes the selection
mechanism, as well as the number of parents and o�spring involved:

• (µ + λ)-selection: the next generation of parents will be the best µ
individuals selected out of the union of current parents and λ o�spring.

• (µ, λ)-selection: the next generation of parents will be the best µ indi-
viduals selected out of the current λ o�spring.

In the case of comma selection, it is rather intuitive that setting µ < λ
would be a necessary condition for an e�cient convergence. In plus selection,
however, any µ > 0 can be chosen in principle. In the latter, the so-called
elitist selection occurs, when the survival of the best individual found so far
is guaranteed, leading to a possible scenario of a parent surviving for the
entire process.

We are now in a position to introduce a pseudocode of the Standard
Evolution Strategy (Algorithm 3).

A Note on Population Sizes One of the important topics in ES research
is the study of optimal population sizes. By de�nition, the magnitude of λ
determines the number of function evaluations per generation, which should
preferably be kept small.
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Typical population sizes in ES keep a ratio of 1
7 between the parent and

the o�spring populations; a popular choice is µ = 15 and λ = 100 (see, e.g.,
[1] and [20]).

Based on experimental observations, when individual step-sizes are cho-
sen as strategy parameters (Eq. 1.15), λ has to scale linearly with n. In
the case of arbitrary normal mutations (Eq. 1.16), Rudolph [24] showed that
successful adaptation to the landscape (i.e., learning successfully the Hessian
matrix) can be achieved with an upper bound of µ + λ = (n2 + 3n + 4)/2,
but it is certainly not likely to be achieved with the typical population sizes
of {µ = 15, λ = 100}.

1.3 Derandomized Evolution Strategies (DES)

Mutative step-size control (MSC) tends to work well in the Standard-ES
for the adaptation of a single global step-size (Eq. 1.14), but tends to fail
when it comes to the individual step-sizes or arbitrary normal mutations
(Eq. 1.15 or Eq. 1.16). Schwefel claimed that the adaptation of the strategy
parameters in those cases is impossible within small populations [19], and
suggested larger populations as a solution to the problem.

Due to the crucial role that the mutation operator plays within Evolution
Strategies, its mutative step-size control was investigated intensively. In
particular, the disruptive e�ects to which the MSC is subject, were studied
at several levels [25, 16], and are reviewed here:

• Indirect selection. By de�nition, the goal of the mutation operator
is to apply a stochastic variation to an object variable vector, which
will increase its selection probability. The selection of the strategy

parameters setting is indirect, i.e., the vector of a successful mutation
is not used to adapt the step-size parameters, but rather the parameters
of the distribution that led to this mutation vector.

• Realization of parameter variation. Due to the sampling from
a random distribution, the realization of the parameter variation does
not necessarily re�ect the nature of the strategy parameters. Thus, the
di�erence de facto between good and bad strategy settings of strategy
parameters is only re�ected in the di�erence between their probabilities
to be selected - which can be rather small. Essentially, this means that
the selection process of the strategy parameters is strongly disturbed.

• The strategy parameter change rate is de�ned as the di�erence between
strategy parameters of two successive generations. Hansen and Oster-
meier [16] argue that the change rate is an important factor, as it gives
an indication concerning the adaptation speed, and thus it has a direct
in�uence on the performance of the algorithm. The principal claim is
that this change rate basically vanishes in the standard-ES.
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The change rate depends on the mutation strength to which the strat-
egy parameters are subject. While aiming at attaining the maximal
change rate, the latter is underposed to an upper bound, due to the �-
nite selection information that can be transferred between generations.
Change rates that exceed the upper bound would lead to a stochas-
tic behavior. Moreover, the mutation strength that obtains optimal
change rate is typically smaller than the one that obtains good diver-
sity among the mutants - a desired outcome of the mutation operator,
often referred to as selection di�erence. Thus, the con�ict between the
objective of optimal change rate versus the objective of optimal selec-
tion di�erence cannot be resolved at the mutation strength level [25].
A possible solution to this con�ict would be to unlink the change rate
from the mutation strength.

The so-called derandomized mutative step-size control aims to treat those
disruptive e�ects, regardless of the problem dimensionality, population size,
etc.

1.3.1 (1, λ) Derandomized ES Variants

The concept of derandomized Evolution Strategies has been originally intro-
duced by scholars at the Technical University of Berlin in the beginning of
the 1990's. It was followed by the release of a new generation of successful
ES variants by Hansen, Ostermeier, and Gawelczyk [26, 27, 28, 29].

The �rst versions of derandomized ES algorithms introduced a controlled
global step-size in order to monitor the individual step-sizes by decreasing
the stochastic e�ects of the probabilistic sampling. The selection disturbance
was completely removed with later versions by omitting the adaptation of
strategy parameters by means of probabilistic sampling. This was combined
with individual information from the last generation (the successful muta-
tions, i.e., of selected o�spring), and then adjusted to correlated mutations.
Later on, the concept of adaptation by accumulated information was intro-
duced, aiming to use wisely the past information for the purpose of step-size
adaptation: Instead of using the information from the last generation only,
it was successfully generalized to a weighted average of the previous genera-
tions.

Note that the di�erent derandomized-ES variants strictly follow a (1, λ)
strategy, postponing the treatment of recombination or plus-strategies for
later stages1. In this way, the question how to update the strategy parame-
ters when an o�spring does not improve its ancestor is not relevant here.

Moreover, the di�erent variants hold di�erent numbers of strategy pa-
rameters to be adapted, and this is a factor in the learning speed of the

1When asked about comma versus plus strategies, Hansen states that �with a good
enough algorithm at hand, employing the plus strategy is unnecessary, as your algorithm
should be able to revisit the best attainable solution�.
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optimization routine. The di�erent algorithms hold a number of strategy
parameters scaling either linearly (O(n) parameters responsible for individ-
ual step-sizes) or quadratically (O(n2) parameters responsible for arbitrary
normal mutations) with the dimensionality n of the search space.

1.3.2 First Level of Derandomization

The so-called �rst level of derandomization achieved the following desired
e�ects:

• A degree of freedom with respect to the mutation strength of the strat-
egy parameters.

• Scalability of the ratio between the change rate and the mutation
strength.

• Independence of population size with respect to the adaptation mech-
anism.

We choose to review the implementation of the �rst level of derandom-
ization through three particular derandomized ES variants:

DR1

The �rst derandomized attempt [26] coupled the successful mutations to the
selection of decision parameters, and learned the mutation step-size as well
as the scaling vector based upon the successful variation. The mutation step
is formulated for the kth individual, k = 1, . . . , λ:

x⃗(g+1) = x⃗(g) + ξkδ
(g)ξ⃗kscalδ⃗

(g)
scalz⃗k z⃗k ∈ {−1,+1}n (1.18)

Note that z⃗k is a random vector of ±1, rather than a normally distributed
random vector, while ξ⃗kscal ∼ N⃗ (0, 1)+, i.e., distributed over the positive part
of the normal distribution. The evaluation and selection are followed by the
adaptation of the strategy parameters (subscripts sel refer to the selected
individual):

δ(g+1) = δ(g) · (ξsel)β (1.19)

δ⃗
(g+1)
scal = δ⃗

(g)
scal ·

(
ξ⃗selscal + b

)βscal

(1.20)

P
(
ξk = 7

5

)
= P

(
ξk = 5

7

)
= 1

2 ; β =
√

1/n , βscal = 1/n, b = 0.35, and
ξk ∈

{
7
5 ,

5
7

}
are constants. Note that the multiplication in Eq. 1.20 is between

two vectors and carried out as element-by-element multiplication, yielding a
vector of the same dimension n.
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DR2

The second derandomized ES variant [27] aimed to accumulate information
about the correlation or anti-correlation of past mutation vectors in order to
adapt the global step-size as well as the individual step-sizes - by introducing
a quasi-memory vector. This accumulated information allowed omitting the
stochastic element in the adaptation of the strategy parameters - updating
them only by means of successful variations, rather than with random steps.

The mutation step for the kth individual, k = 1, . . . , λ, reads:

x⃗(g+1) = x⃗(g) + δ(g)δ⃗
(g)
scalz⃗k z⃗k ∼ N⃗ (0, 1) (1.21)

Introducing a quasi-memory vector Z⃗:

Z⃗(g) = cz⃗sel + (1− c) Z⃗(g−1) (1.22)

The adaptation of the strategy parameters according to the selected o�-
spring:

δ(g+1) = δ(g) ·

exp
 ∥Z⃗(g)∥
√
n
√

c
2−c

− 1 +
1

5n

β

(1.23)

δ⃗
(g+1)
scal = δ⃗

(g)
scal ·


∣∣∣Z⃗(g)

∣∣∣√
c

2−c

+ b

βscal

,
∣∣∣Z⃗(g)

∣∣∣ = (|Z(g)
1 |, |Z

(g)
2 |, ..., |Z

(g)
n |
)

(1.24)
with β =

√
1/n , βscal = 1/n, b = 0.35, and the quasi-memory rate c =√

1/n as constants. Note that the multiplication in Eq. 1.24 is between
two vectors and carried out as element-by-element multiplication, yielding a
vector of the same dimension n.

DR3

This third variant [28], usually referred to as the Generation Set Adaptation

(GSA), considered the derandomization of arbitrary normal mutations for
the �rst time, aiming to achieve invariance with respect to the scaling of
variables and the rotation of the coordinate system. This naturally came
with the cost of a quasi-memory matrix, B ∈ Rm×n, setting the dimension
of the strategy parameters space to n2 ≤ m ≤ 2n2. The adaptation of the
global step-size is mutative with stochastic variations, just like in the DR1.

The mutation step is formulated for the kth individual, k = 1, . . . , λ:

x⃗(g+1) = x⃗(g) + δ(g)ξky⃗k (1.25)

y⃗k = cmB(g) · z⃗k z⃗k ∼ N⃗ (0, 1) (1.26)
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The update of the memory matrix is formulated as:

B(g) =
(⃗
b
(g)
1 , . . . , b⃗(g)m

)
b⃗
(g+1)
1 = (1− c) · b⃗(g)1 + c · (cuξsely⃗sel) , b⃗

(g+1)
i+1 = b⃗

(g)
i

(1.27)

The step-size is updated as follows:

δ(g+1) = δ(g) (ξsel)
β (1.28)

where P
(
ξk = 3

2

)
= P

(
ξk = 2

3

)
= 1

2 ; β =
√

1/n , cm = (1/
√
m )(1 + 1/m),

c =
√

1/n , ξk ∈
{
3
2 ,

2
3

}
, and cu =

√
(2− c)/c are constants.

1.4 The Covariance Matrix Adaptation ES

Following a series of successful derandomized ES variants addressing the �rst
level of derandomization, and a continuous e�ort at the Technical Univer-
sity of Berlin, the so-called Covariance Matrix Adaptation (CMA) Evolution
Strategy was released in 1996 [29], as a completely derandomized Evolution
Strategy � the fourth generation of derandomized ES variants.

Second Level of Derandomization The so-called second level of deran-

domization targeted the following e�ects:

• The probability to regenerate the same mutation step is increased.

• The change rate of the strategy parameters is subject to explicit con-
trol.

• Strategy parameters are stationary when subject to random selection.

The second level of derandomization was implemented by means of the CMA.
The CMA combines the robust mechanism of ES with powerful statistical

learning principles, and thus it is sometimes subject to informal criticism for
not being a genuine Evolution Strategy. In short, it aims at satisfying the
maximum likelihood principle by applying Principle Components Analysis

(PCA) to the successful mutations, and it uses cumulative global step-size

adaptation.

1.4.1 Preliminary

One of the goals of the CMA is to achieve a successful statistical learning
process of the optimal mutation distribution, which is equivalent to learn-
ing a covariance matrix proportional to the inverse of the Hessian
matrix (see, e.g., [30]), without calculating the actual derivatives:

C ∝ H−1
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Rather than representing a mutation step with a normal variation with zero
mean (Eq. 1.9), it is convenient to refer to the original notation of the normal
distribution. Thus, in the notation we use here, the vector m⃗ represents the
mean of the mutation distribution, but is also associated with the favorite
solution at present (i.e., x⃗OLD of Eq. 1.9), σ denotes the global step-size, and
the covariance matrix C determines the shape of the distribution ellipsoid:

x⃗NEW ∼ N (m⃗, σ2C) = m⃗+ σ · N (⃗0,C) = m⃗+ σ · z⃗

Di�erent principles dictate the adaptation of the covariance matrix,C, versus
the adaptation of the global step-size σ:

• The mean m⃗ and the covariance matrix C of the normal distribution
are updated according to the maximum likelihood principle, such that
good mutations are likely to appear again. m⃗ is updated such that

P
(
x⃗sel|N

(
m⃗, σ2C

))
−→ max

and C is updated such that

P
(
x⃗sel − m⃗old

σ

∣∣∣∣N (0⃗,C)) −→ max

considering the prior C. This is implemented through the so-called
Covariance Matrix Adaptation (CMA) mechanism.

• σ is updated such that it is conjugate perpendicular to the consecutive
steps of m⃗. This is implemented through the so-called Cumulative

Step-size Adaptation (CSA) mechanism.

The Evolution Path

The most intuitive way to update the covariance matrix would be to con-
struct an n × n matrix analogue to the DR2 mechanism (see Eq. 1.22),
with the outer-product of the selected mutation vector z⃗sel:

C←− (1− ccov)C+ ccov z⃗selz⃗
T
sel

However, the sign information of z⃗sel is lost due to z⃗selz⃗Tsel = −z⃗sel (−z⃗sel)
T .

The solution lies within the de�nition of the so-called evolution path, which
accumulates the history information using an exponentially weighted moving

average:

p⃗c ∝
g∑

i=0

(1− cc)g−iz⃗
(i)
sel

And now the covariance matrix adaptation step reads:

C←− (1− ccov)C+ ccovp⃗cp⃗
T
c
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The Path Length Control

The covariance matrix update is not likely to increase the variance in all
directions simultaneously, and thus a global step-size control is much needed.
The basic idea of the so-called path length control is to measure the length
of the evolution path, which is also the consecutive steps of m⃗, and adapt
the step-size according to the following argument: If the evolution path is
longer than expected, the steps are likely parallel, and thus the step-size
should be increased; Alternatively, if it is shorter than expected, the steps
are probably anti-parallel, and the step-size should be decreased accordingly.
The expected length is de�ned in a straightforward manner as the expected
length of a normally distributed random vector.

The actual measurement is done by means of the "conjugate" evolution
path:

p⃗σ ∝
g∑

i=0

(1− cσ)g−iC(i) − 1
2 z⃗

(i)
sel

where the factorization of C is required in order to align all directions within
the rotated frame. Then, the update of the step-size depends on the compar-
ison between ∥p⃗σ∥ and the expected length of a normally distributed random
vector, E [∥N (0, I) ∥]:

σ ←− σ · exp
(

∥p⃗σ∥
E [∥N (0, I) ∥]

− 1

)

1.4.2 The (1, λ) Rank-One CMA

We are now in a position to introduce the explicit formulation of the rank-one
update with cumulation Covariance Matrix Adaptation Evolution Strategy,
following the notation introduced in Section 1.4.1. Additionally, consider the
diagonalization of the covariance matrix, denoted by

C(g) = B(g)D(g)
(
B(g)D(g)

)T
(1.29)

where B(g) is an orthonormal rotation matrix which de�nes the coordinate
system, and D(g) = diag

(√
Λ1 ,
√
Λ2 , ...,

√
Λn

)
holds the square-roots of the

eigenvalues.
The mutation step for the kth individual, k = 1, . . . , λ, is then de�ned

as:
x⃗
(g+1)
k = x⃗(g) + σ(g)B(g)D(g)z⃗

(g+1)
k (1.30)

with z⃗k ∼ N⃗
(
0⃗, I
)
.

The evolution path, initialized p⃗(0)c = 0⃗, is explicitly updated as follows:

p⃗(g+1)
c = (1− cc) · p⃗(g)c +

√
cc(2− cc) ·B(g)D(g)z⃗

(g+1)
sel (1.31)
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and then the covariance matrix, initialized as identity C(0) = I, is adapted
accordingly:

C(g+1) = (1− ccov) ·C(g) + ccov · p⃗(g+1)
c

(
p⃗(g+1)
c

)T
(1.32)

The calculation of the "conjugate" evolution path, initialized p⃗(0)σ = 0⃗, reads:

p⃗(g+1)
σ = (1− cσ) · p⃗(g)σ +

√
cσ(2− cσ) ·B(g)z⃗

(g+1)
sel (1.33)

and then followed by the update of the global step-size:

σ(g+1) = σ(g) · exp

 cσ
dσ
·


∥∥∥p⃗(g+1)

σ

∥∥∥
E [∥N (0, I) ∥]

− 1

 (1.34)

The various learning coe�cients are typically set as cc = 4/(n + 4), ccov =
2/(n+1.4)2, cσ = 3/(n+4), and dσ = 1+ cσ. The expectation of the length
of a normally distributed random vector is given by:

E [∥N (0, I) ∥] =
√
2 ·

Γ
(
n+1
2

)
Γ
(
n
2

) (1.35)

where the Gamma function is de�ned by:

Γ(n) =

∫ ∞

0
xn−1 exp(−x)dx (1.36)

but may also be approximated by E [∥N (0, I) ∥] ≈
√
n
(
1− 1

4n + 1
21n2

)
.

Implementation Additional implementation remarks are outlines here:

• Arnold o�ered2 a dramatic simpli�cation to the global step-size update

(Eq. 1.34) with replacing

( ∥∥∥p⃗(g+1)
σ

∥∥∥
E[∥N (0,I)∥] − 1

)
by

(∥∥∥p⃗(g+1)
σ

∥∥∥2−n

2n

)
. This

was reported to perform equally well [16].

• The update of the evolution path (Eq. 1.31) is usually implemented
with a conditional threshold as follows:

p⃗(g+1)
c = (1− cc) · p⃗(g)c +H(g+1)

σ

√
cc(2− cc) ·B(g)D(g)z⃗

(g+1)
sel (1.37)

H(g+1)
σ =

 1 if

∥∥∥p⃗(g+1)
σ

∥∥∥√
1−(1−cσ)

2
< Hthresh

0 otherwise
(1.38)

where Hthresh =
(
1.5 + 1

n−0.5

)
· E [∥N (0, I) ∥].

2Hansen et al. cite this source of information as personal communications.
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1.4.3 The (µW , λ) Rank-µ CMA

The Rank-µ Covariance Matrix Adaptation [31] is an extension of the original
update rule for larger population sizes. The idea is to use µ > 1 vectors
in order to update the covariance matrix C in each generation, based on
weighted intermediate recombination.

Let x⃗i:λ denote the ith ranked solution point, such that

f (x⃗1:λ) ≤ f (x⃗2:λ) ≤ · · · ≤ f (x⃗λ:λ)

The updated mean is now de�ned as follows:

m⃗←
µ∑

i=1

wix⃗i:λ = m⃗+ σ

µ∑
i=1

wiz⃗i:λ ≡ ⟨x⃗⟩W

with a set of weights:

w1 ≥ w2 ≥ · · · ≥ wµ > 0,

µ∑
i=1

wi = 1

Essentially, this is a generalization of the intermediate recombination concept
(Eq. 1.17), suggested by Rechenberg3.

By setting ∀i : wi =
1
µ , the original recombination is restored, which is

then noted by (µI , λ) (note, however, that the (µ/µI , λ) notation is also used
[32]).

The covariance matrix update can now be formalized by means of rank-µ
update, using an outer-product of the weighted mutation vectors:

C←− (1− ccov)C+ ccov

µ∑
i=1

wiz⃗i:λz⃗
T
i:λ

It can be even furthermore combined with the rank-one update:

C←− (1− ccov)C+
ccov
µcov

p⃗cp⃗
T
c + ccov

(
1− 1

µcov

) µ∑
i=1

wiz⃗i:λz⃗
T
i:λ

We shall now present the (µW , λ) rank-µ CMA characteristic equations:

x⃗
(g+1)
k = ⟨x⃗⟩(g)W + σ(g)B(g)D(g)z⃗

(g+1)
k , k = 1, . . . , λ (1.39)

p⃗(g+1)
c = (1− cc) · p⃗(g)c +

√
cc(2− cc) · cWB(g)D(g)⟨z⃗⟩(g+1)

W (1.40)

C(g+1) = (1−ccov)·C(g)+
ccov
µcov
·p⃗(g+1)

c

(
p⃗(g+1)
c

)T
+ccov

(
1− 1

µcov

) µ∑
i=1

wix⃗i:λx⃗
T
i:λ

(1.41)

3Reported as personal communications between Hansen, Ostermeier and Rechenberg.
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p⃗(g+1)
σ = (1− cσ) · p⃗(g)σ +

√
cσ(2− cσ) ·B(g)cW ⟨z⃗⟩(g+1)

W (1.42)

σ(g+1) = σ(g) · exp

 cσ
dσ
·


∥∥∥p⃗(g+1)

σ

∥∥∥
E [∥N (0, I) ∥]

− 1

 (1.43)

The weights are typically set to:

wi=1...µ =
ln (µ+ 1)− ln (i)∑µ
j=1 ln (µ+ 1)− ln (j)

(1.44)

The constant cW is de�ned such that cW ⟨z⃗⟩(g+1)
W and z⃗(g+1)

k are identically
distributed with the same variance under random selection:

cW =

∑µ
i=1wi√∑µ
i=1w

2
i

(1.45)

The special rank-µ constant, µcov, is the variance e�ective selection mass:

µcov =
1∑µ

i=1w
2
i

(1.46)

which becomes µcov = µ in the special case of (µI , λ).
The rest of the constants are set as in the (1, λ) rank-one CMA.

Population Size Given a search space of dimension n, the default CMA
population sizes introduced a revolutionary order of magnitude into the ES
�eld, O(log (n)), especially when we take into account the goal to learn the
full covariance matrix of the decision parameters space.

The explicit suggested values are as follows:

λ = 4 + ⌊3 · ln (n)⌋ µ = ⌊λ/2⌋ (1.47)

1.4.4 The (1 + λ) CMA

This elitist version [17] of the CMA-ES algorithm, which had been originally
derived for the sake of a multi-objective CMA algorithm [33], combined the
classical concept of the (1 + 1) ES strategy, and in particular the success

probability and success rule components (see Eq. 1.7 as well as Section 1.2.2),
with the Covariance Matrix Adaptation concept. The so-called success rule

based step size control replaces the path length control of the CMA-comma
strategy. The same notation as in Section 1.4.2 is used here:

x⃗
(g+1)
k = x⃗(g) + σ(g)B(g)D(g)z⃗

(g+1)
k , k = 1, . . . , λ (1.48)

After the evaluation of the new generation, the success rate is updated
psucc = λ

(g+1)
succ /λ, where:

p̄succ = (1− cp) · p̄succ + cp · psucc (1.49)
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σ(g+1) = σ(g) · exp

(
1

d
·

(
p̄succ −

ptargetsucc

1− ptargetsucc

(1− p̄succ)

))
(1.50)

The covariance matrix is updated only if the selected o�spring is better than
the parent. Then,

p⃗c =

 (1− cc) p⃗c +
√
cc (2− cc) ·

x⃗
(g+1)
sel −x⃗(g)

σ
(g)
parent

if p̄succ < pΘ

(1− cc) p⃗c otherwise
(1.51)

C(g+1) =


(1− ccov) ·C(g) + ccov · p⃗cp⃗Tc if p̄succ < pΘ

(1− ccov) ·C(g) + ccov ·
(
p⃗cp⃗

T
c + cc (2− cc)C(g)

)
otherwise

(1.52)
The default parameters are set as follows: d = 1 + n

2 , p
target
succ = 2

11 , cp = 1
12 ,

cc =
2

n+2 , ccov = 2
n2+6

, and pΘ = 0.44.

A Note on Usage As mentioned earlier, this plus-strategy version was
constructed for multi-objective optimization. Uno�cially, it is not recom-
mended to use it otherwise. In this work, we will restrict the use of the
CMA+ to the niching framework exclusively, and thus will not consider it
upon the employment of the DES variants to single-criterion Quantum Con-
trol optimization tasks in Chapter 7.

1.4.5 Constraints Handling

The broad topic of constraints handling [34] is certainly not of a major
concern in this study, but it does have an indirect impact on the niching
techniques to be introduced here, as will become more clear in the following
chapters. We thus choose to specify here, in short, the general approach to
handle constraints when derandomized-ES are in use, in light of the rule of
thumb suggested by Hansen and Ostermeier for the CMA (see [16], pp. 21).

A possible way to handle constraints would be to repeat the generation
step (e.g., Eq. 1.30) until λ, or at least µ feasible solutions are generated.
This should be strictly enforced, before the following update equations are
applied. It is claimed that this method should perform in a satisfying man-
ner, if a su�cient number of feasible solutions are initially generated - due
to the symmetry of the mutation distribution. However, if the global mini-
mum is located at the edge of the feasible domain, it is suggested that other
constraints handling techniques should be used.

1.4.6 Discussion

The Covariance Matrix Adaptation Evolution Strategy is a state-of-the-art
optimization routine, which combines classical deterministic concepts (e.g.,
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Hessian or Covariance matrices learning) and statistical learning tools (e.g.,
Principal Components Analysis) with the powerful stochastic mechanism
of Evolution Strategies. In terms of standard performance criteria, it was
ranked as the best Evolutionary Algorithm at hand [35].

The CMA-ES has been informally criticized for not being a genuine evolu-
tion strategy, since it incorporates those non-evolutionary components. Even
as such, and despite its considerable success-rate as a global optimizer, we
would like to stress that it certainly has a nature of a local search routine.
The fact that it learns a unimodal distribution in the search space - no mat-
ter how well it does so - makes it a local search. We believe that this provides
us with some motivation to use the CMA-ES, as well as other derandomized-
ES routines, as algorithmic kernels for a multi-distribution approach - which
would construct a niching algorithm. The idea would be essentially to use
multiple CMAs in parallel, aiming to achieve a good coverage of the land-
scapes with local-searchers. This idea would become more clear in the next
chapter, when we introduce the gateway to niching.





The genes are the master programmers, and they are

programming for their lives. They are judged according to the

success of their programs in coping with all the hazards that

life throws at their survival machines, and the judge is the

ruthless judge of the court of survival.

The Sel�sh Gene; Richard Dawkins

Chapter 2

Introduction to Niching

2.1 Speciation Theory vs. Conceptual Designs

Evolutionary Algorithms have the tendency to lose diversity within their
population of feasible solutions and to converge into a single solution [1, 36,
37], even if the search landscape has multiple globally optimal solutions.

Niching methods, the extension of EAs to �nding multiple optima in
multi-modal optimization within one population, address this issue by main-
taining the diversity of certain properties within the population. Thus, they
aim at obtaining parallel convergence into multiple basins of attraction in a
multi-modal landscape within a single run.

The study of niching is challenging both from the theoretical point
of view and from the practical point of view. The theoretical challenge
is two-fold - maintaining the diversity within a population-based stochastic
algorithm from the computational perspective, but also having an insight
into speciation theory or population genetics from the Evolutionary Biology
perspective. The practical aspect provides a real-world incentive for this
problem - there is an increasing interest of the applied optimization commu-

nity in providing the decision maker with multiple solutions which ideally
represent di�erent conceptual designs, for single-criterion or multi-criterion
search spaces [38, 39]. The concept of "going optimal" is often extended now
into the aim for "going multi-optimal", so to speak: Obtaining optimal
results but also providing the decision maker with di�erent choices.
On this particular note, it is worth mentioning the so-called Second Toyota

Paradox [40]:

"Delaying decisions, communicating ambiguously, and pursuing

an excessive number of prototypes, can produce better cars faster

and cheaper."

Niching methods have been studied in the past 35 years, mostly in the
context of Genetic Algorithms, and the focus has been mainly on the theo-
retical aspect. As will be discussed here, niching methods have been mostly

33
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a by-product of studying population diversity, and were hardly ever at the
front of the EC research.

This chapter, the gateway to niching, discusses a variety of introductory
topics - ranging from biological aspects of diversity and speciation, mathe-
matical de�nitions of basins of attraction, to GA niching methods - which
re�ect the strong interdisciplinary nature of this subject.

2.2 From DNA to Organic Diversity

In this section we introduce the biological elementary concepts that corre-
spond to the core of niching methods: population diversity. This section is
mainly based on [41] and personal lecture notes1.

A Preliminary Note on Terminology A species is de�ned as the small-
est evolutionary independent unit. The term niche, however, stems from
ecology, and it has several di�erent de�nitions. It is sometimes referred to
as the collective environmental components which are favored by a speci�c
species, but could also be considered as the ecosystem itself which hosts indi-
viduals of various species. Most de�nitions would typically also consider the
hosting capacity of the niche, which refers to the limited available resources
for sustaining life in its domain.

In the context of function optimization, niche is associated with a peak,
or a basin of attraction, whereas a species corresponds to the subpopulation
of individuals occupying that niche.

2.2.1 Genetic Drift

Organic evolution can be broken down into four de�ning fundamental mecha-
nisms: natural selection, mutation, migration or gene �ow, and genetic drift.
The latter, which essentially refers to sampling errors in �nite populations,
was overlooked by Darwin, who had not been familiar with Mendelian ge-
netics, and thus did not discuss this e�ect in his "Origin of Species" [42]. In
short, genetic drift is a stochastic process in which the diversity is lost in
�nite populations. A distribution of genetic properties is transferred to the
next generation in a limited manner, due to the �nite number of generated
o�spring, or equivalently the limited statistical sampling of the distribution.
As a result, the distribution is likely to approach an equilibrium distribution,
e.g., �xation of speci�c alleles when subject to equal �tness. This is why
genetic drift is often considered as a neutral e�ect. The smaller the popu-
lation, the faster and stronger this e�ect occurs. An analogy is occasionally
drawn between genetic drift to Brownian motion of particles in mechanics.

1Notes were taken in the course "Evolutionary Biology" of Prof. David Stern (EEB309),
Princeton University, Fall 2007.
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In order to demonstrate the genetic drift e�ect, we conducted simula-
tions2 on the following basic model of population genetics: The evolution
of random-mating populations with two alleles, namely, A and a, equal �t-
nesses of the three genotypes (i.e., no preferences for AA, Aa, nor aa), no
mutations, no migration between the replicate populations, and �nite pop-
ulation size N . We simulated ten simultaneously evolving populations, for
three test-cases of population sizes: N1 = 10, N2 = 100, and N3 = 1000.
Figure 2.1 o�ers an illustration for the three di�erent simulations. It is easy
to observe a clear trend in this simple experiment: Alleles' loss/�xation is
very likely to occur in small population sizes, and is not likely to occur in
large population sizes.

The genetic drift e�ect had been originally recognized by R.A. Fisher
[43] (referred to as random survival), and was explicitly mentioned by S.
Wright when studying Mendelian populations [44]. It was, however, re-
visited and given a new interpretation in the Neutral Theory of Molecular

Evolution of Kimura [45]. The Neutral Theory suggested that the random ge-

netic drift e�ect is the main driving force within molecular evolution, rather
than the non-random natural selection mechanism. Natural selection as well
as genetic drift are considered nowadays, by the contemporary evolution-
ary biology community, as the combined driving force of organic evolution.
Moreover, the importance of the Neutral Theory is essentially in its being a
null hypothesis model for the Natural Selection Theory - by de�nition.

2.2.2 Organic Diversity

Diversity among individuals or populations in nature can be attributed to
di�erent evolutionary processes which occur at di�erent levels. We distin-
guish here between variations that are observed within a single species to
a speciation process, during which a new species arises, and review shortly
both of them.

Variations within a Species Diversity of organisms within a single species
stems from variance at the genotypic level, referred to as genetic diversity, or
from the existence of spectrum of phenotypic realizations to a speci�c geno-
type. These e�ects are quanti�ed and are usually associated with genotypic

variance and phenotypic variance, respectively. Several hypotheses explain-
ing genetic diversity have been proposed within the discipline of population
genetics, including the neutral evolution theory. It should be noted that ge-
netic diversity is typically considered to be advantageous for survival, as it
may allow better adaptation of the population to environmental changes,
such as climate variations, diseases, etc.

Phenotypic variance is measured on a continuous spectrum, also known

2Simulations were conducted with the PopG Genetic Simulation Program, version 3.1.
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Figure 2.1: Ten simultaneously evolving populations, for three test-cases
of population sizes: N1 = 10 [TOP], N2 = 100 [CENTER], and N3 = 1000
[BOTTOM]. The vertical axis corresponds to the allele frequency of A in the
population, as a function of generations, indicated on the horizontal axis.
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as quantitative variation. Roughly speaking, the main sources of quantitative
variations [41, 46] are outlined here:

1. Genes have multiple loci, and hence are mapped into a large set of
phenotypes.

2. Environmental e�ects have direct in�uence on natural selection; �tness
is time-dependent, and thus phenotypic variations in the outcome of
selection are expected.

3. Phenotypic plasticity is the amount in which the genotypic expression

vary in di�erent environments3, and it is a direct source of variation
at the phenotypic level.

4. The plastic response of the genotype to the environment, i.e., the joint
e�ect of genetic and environmental elements, also a�ects the selection
of a speci�c phenotype, and thus can lead to variations. This e�ect is
known as Genotype-Environment Interaction ("G-by-E").

Thus, quantitative variations are mainly caused by genotypic and phenotypic
realizations and their interaction with the environment. The ratio between
genetic variance to total phenotypic variance is de�ned as heritability [44].

Speciation The essence of the speciation process is lack of gene �ow,
where physical isolation often plays the role of the barrier to gene �ow. Lack
of gene �ow is only one of the necessary conditions for speciation. Another
necessary condition for speciation to occur is that the reduction of gene �ow
will be followed by a phase of genetic divergence, by means of mutation,
selection, and drift. Finally, the completion or elimination of divergence can
be assessed via the so-called secondary contact phase: interbreeding between
the parental populations would possibly fail (o�spring is less �t), succeed
(o�spring is �tter), or have a neutral outcome (o�spring has the same �tness).
This would correspond respectively to increasing, decreasing or stabilizing
the di�erentiation between the two arising species. Note that the speciation
can occur de facto, without the actual secondary contact taking place; the
latter is for observational assessment purposes.

In organic evolution, four di�erent levels of speciation are considered,
corresponding to four levels of physical linkage between the subpopulations:

1. Allopatric speciation The split in the population occurs only due to
complete geographical separation, e.g., migration or mountain build-
ing. It results in two geographically isolated populations.

3Bradshaw [47] gave the following qualitative de�nition to phenotypic plasticity: "The
amount by which the expressions of individual characteristics of a genotype are changed
by di�erent environments is a measure of the plasticity of these characters".
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2. Peripatric speciation Species arise in small populations which are
not geographically separated but rather isolated in practice; the e�ect
occurs mainly due to the genetic drift e�ect.

3. Parapatric speciation The geographical separation is limited, with
a physical overlap between the two zones where the populations split
from each other.

4. Sympatric speciation The two diverging populations coexist in the
same zone, and thus the speciation is strictly non-geographical. This
is observed in nature in parasite populations, that are located in the
same zone, but associated with di�erent plant or animal hosts [48].

These four modes of speciation correspond to four levels of geographically
decreasing linkages. Roughly speaking, statistical association of genetic com-
ponents in nature, such as loci, typically results from physical linkage. In this
case, we claim that statistical disassociation, which is the trigger to specia-
tion, originates from gradually decreasing physical linkage.

In summary, speciation typically occurs throughout three steps:

1. Geographic isolation or reduction of gene �ow.

2. Genetic divergence (mutation, selection, drift).

3. Secondary contact (observation/assessment).

2.3 "Ecological Optima": Basins of Attraction

We devote this section to the de�nition of basins of attraction. This section
is mainly based on Törn and Zilinskas [8].

The task of de�ning a generic basin of attraction seems to be one of the
most di�cult problems in the �eld of global optimization, and there have
only been few attempts to treat it theoretically4 [8].

Rigorously, it is possible to de�ne the basin by means of a local optimizer.
In particular, consider a gradient descent algorithm starting from x⃗0, which
is characterized by the following dynamics:

dx⃗(t)

dt
= −∇f (x⃗(t)) (2.1)

with the initial condition x⃗ (0) = x⃗0. Now, consider the set of points for
which the limit exists:

Υ =
{
x⃗ ∈ Rn

∣∣∣x⃗(0) = x⃗ ∧ x⃗(t)|t≥0 satis�es Eq. 2.1 ∧ lim
t→∞

x⃗(t) exists
}
(2.2)

4Intuitively, and strictly metaphorically speaking, we may think of a region of attraction

of x⃗L as the region, where if water is poured, it will reach x⃗L. Accordingly, we may then
think of the basin of x⃗L as the maximal region that will be covered when the cavity at x⃗L

is �lled to the lowest part of its rim.
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De�nition 2.3.1. The region of attraction A(x⃗L) of a local minimum x⃗L is

A(x⃗L) =
{
x⃗ ∈ Υ

∣∣∣x⃗(0) = x⃗ ∧ x⃗(t)|t≥0 satis�es Eq. 2.1 ∧ lim
t→∞

x⃗(t) = x⃗L

}
.

(2.3)
The basin of x⃗L is the maximal level set that is fully contained in A(x⃗L).

In the case of several disconnected local minima with the same function
value, it is possible to de�ne the region of attraction as the union of the
non-overlapping connected sets.

2.3.1 Classi�cation of Optima: The Practical Perspective

On the note of the theoretical de�nition of the basin, it is worth mentioning
the practical perspective for the classi�cation of optima shapes, also referred
to as global topology. This topic is strongly related to the emerging sub�eld
of robustness study (see, e.g., [49]), which aims at attaining high-yield optima
with large basins (i.e., low partial derivative values in the proximity of the
peak). Moreover, yet visited from a di�erent direction, another approach
was introduced recently by Lunacek and Whitley for classifying di�erent
classes of multimodal landscapes with respect to algorithmic performance
[50]. The latter de�nes the dispersion metric of a landscape as the degree
to which the local optima are globally clustered near one another. Land-
scapes with low dispersion have their best local optima clustered together in
a single funnel5. This classi�cation to low dispersion versus high dispersion
may be associated with the algorithmic trade-o� between exploration of the
landscape and exploitation of local structures. In the broad context of this
work, it is interesting to note that the CMA was shown in [50] to perform
well on low-dispersion landscapes, and was less e�cient on high-dispersion
landscapes.

2.4 Population Diversity within EAs

The term population diversity is commonly used in the context of Evolution-
ary Algorithms, but it rarely refers to a rigorous de�nition. Essentially, it
is associated both with genetic diversity and speciation - the two di�erent
concepts from organic evolution that were discussed in Section 2.2 - at the
same time. This is simply due to the fact that the di�erences between the
two concepts do not have any practical e�ect on the evolutionary search and
the goal of maintaining diversity among the evolving candidate solutions. In
the well known trade-o� between exploration and exploitation of the land-
scape during a search, maintaining population diversity is a driving force in
the exploration front, and thus it is an important component. Among EC

5We deliberately avoid the de�nition of a funnel, as its de�nition is rather vague. We
refer the reader to [51].
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researchers, population diversity is �rst considered as a component due to
play a role in a fruitful exploration of the landscape for the sake of obtaining
a single solution, while its role in obtaining multiple solutions is typically
considered as a secondary one.

Mahfoud's Formalism Mahfoud constructed a formalism for character-
izing population diversity in the framework of Evolutionary Algorithms (see
[37], pp. 50-59). Mahfoud's formal framework was based on the partition-
ing of the search space into equivalence classes (set to minima in the search
landscape), a descriptive relation (typically, genotypic or phenotypic map-
pings), and the measurement of distance between the current distribution of
subpopulations to some given goal-distribution.

Let P = {pi}ℓi=1 be a discrete distribution describing the current parti-
tioning of the population into subpopulations, i.e., pi is the portion of the
population located at the ith site. Let Q = {qi}ℓi=1 be the goal-distribution
of the population with respect to the de�ned sites. We demand that by
construction we have

∑ℓ
i=1 pi = 1, as well as

∑ℓ
i=1 qi = 1. The formal-

ism focuses in de�ning the directed divergence, or distance, of distribution
P to distribution Q. Several well-known metrics follow this formalism by
satisfying its various criteria. We review some of them here.

1. The entropy of a system is a quantitative measurement of its disor-
der or randomness [52]. Although it had originated in Physics, in the
Second Law of Thermodynamics, it also became an important criterion
in information systems, also referred to as Shannon's Information En-

tropy. Accordingly, this general concept has several de�nitions, where
we choose here to introduce a relevant de�nition to probability distri-
butions.

De�nition 2.4.1. The entropy of a discrete probability distribution,
{pi}ℓi=1, is de�ned as:

S(P ) =

ℓ∑
i=1

pi · ln
(

1

pi

)
= −

ℓ∑
i=1

pi · ln (pi) (2.4)

The following measure, developed by Kullback and Leibler [53], quan-
ti�es the directed divergence between the two distributions, P and Q,
as long as it is well de�ned (i.e., ∀i pi > 0, qi > 0):

D (P,Q) =
ℓ∑

i=1

pi · ln
(
pi
qi

)
(2.5)

Given a uniform goal-distribution, the Kullback-Leibler measure is re-
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duced to the following:

D (P,U) =

ℓ∑
i=1

pi · ln
(
pi
1/ℓ

)
= ln (ℓ)− S(P ) (2.6)

Mahfoud shows that the Kullback-Leibler measure satis�es the criteria
of his formalism, and can be used as a diversity measure.

2. The standard distance metrics are useful measures of directed diver-
gence between the distributions.

De�nition 2.4.2. A family of distance metrics is de�ned as follows:

D (P,Q) =

√√√√ ℓ∑
i=1

|pi − qi|k , 0 < k ≤ ∞ (2.7)

Mahfoud shows that the family of distance metrics, with 0 < k ≤ ∞,
satis�es the criteria and can be used as diversity measures.

This analytical framework, with its derived measurements of diversity, al-
lowed Mahfoud to compare the role of population diversity among di�erent
GA niching techniques, and essentially became a performance criterion in
his study.

Diversity Loss Subject to the complex dynamics of the various forces
within an evolutionary algorithm, population diversity is typically lost, and
the search is likely to converge into a single basin of attraction in the land-
scape.

Population diversity loss within the population of solutions is the funda-
mental e�ect which niching methods aim to treat. In fact, from the histor-
ical perspective, the quest for diversity-promoting-techniques was the main
goal within the EC community for some time, and niching methods were
merely obtained as by-products, so to speak, of that e�ort. As will be argued
here, population diversity is an important component in a population-based
search, and it even becomes critical in extended techniques, such as Evolu-
tionary Multi-Objective approaches (see Chapter 5).

Next, we describe the e�ect of diversity loss within Evolution Strate-
gies. This will be followed by some conclusions drawn by the GA research
concerning diversity loss within GAs, as a point of reference to ES.

2.4.1 Diversity Loss in Evolution Strategies

The de�ning mechanism of ES is strongly dictated by the mutation operator
as well as by the deterministic selection operator. As de�ning operators,
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they have a direct in�uence on the diversity property of the population. The
recombination operator, nevertheless, does not play a critical role in the ES
mechanism. In practice, especially in the context of derandomized ES, it is
not an essential component.

We attribute two main components to the population diversity loss within
ES: fast take-over, which is associated with the selection operator, and ge-

netic drift (or neutrality e�ect), which is associated both with the selection
and the recombination operators, respectively.

Selective Pressure: Fast Take-Over

Evolution Strategies have a strictly deterministic, rank-based approach, to
selection. In the two traditional approaches, (µ, λ) and (µ + λ), the best
individuals are selected - implying, rather intuitively, high selective pressure.
Due to the crucial role of the selection operator within the evolution process,
its impact within the ES �eld has been widely investigated.

Goldberg and Deb introduced the important concept of takeover time

[54], which gives a quantitative description of selective pressure with re-
spect to the selection operator exclusively:

De�nition 2.4.3. The takeover time τ∗ is the minimal number of gener-
ations until repeated application of the selection operator yields a uniform
population �lled with copies of the best individual.

The selective pressure has been further investigated by Bäck [36], who
analyzed all the ES selection mechanisms also with respect to takeover times.
Here, we introduce the results for the takeover times of the main selection
mechanisms in the absence of mutation, where we chose to omit the deriva-
tions. See [1] for the proofs.

Theorem 2.4.4. The takeover time of (µ, λ)-selection is :

τ∗(µ,λ) =
ln(λ)

ln
(
λ
µ

) (2.8)

Theorem 2.4.5. The takeover time of (µ + λ)-selection is given implicitly

by:

λ =

(
ατ∗+1
1 − ατ∗+1

2

)
√

λ
µ ·
(
λ
µ + 4

)
α1,2 =

λ

2µ
± 1

2
·

√(
λ

µ

(
λ

µ
+ 4

)) (2.9)
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Corollary 2.4.6. It is easy to verify that upon the substitution of the tradi-

tional population sizes of the standard-ES, one obtains very short takeover
times for the given selection mechanisms, which imply high selective pres-
sure.

The ratio λ
µ clearly plays a dominant role in the derived takeover times of

the two selection approaches. Not surprisingly, the term selective pressure is
occasionally associated with this ratio. It should be noted that the same ratio
also governs the convergence velocity of the (µ +, λ)-ES for large population
sizes, i.e., µ≫ 1 (see [1] pp. 89-90).

ES Genetic Drift

We consider two di�erent ES neutral e�ects, that could be together ascribed
as a general ES genetic drift: Recombination drift and selection drift. We
argue that these two components are directly responsible to the loss of pop-
ulation diversity in ES.

Recombination Drift Beyer explored extensively the so-called mutation-

induced speciation by recombination (MISR) principle (see, e.g., [55]). Ac-
cording to this important principle, repeated application of the mutation
operator, subject to a dominant recombination operator, would lead to a
stable distribution of the population, which resembles a species or a cloud
of individuals. When �tness-based selection is applied, this cloud is likely to
move together towards �tter regions of the landscape. Furthermore, Beyer
managed to prove analytically [55] that the MISR principle is indeed uni-
versal when �nite populations are employed, subject to sampling-based re-
combination. The latter was achieved by analyzing the ES dynamics with-
out �tness-based selection, deriving the expected population variance, and
showing that it is reduced with random sampling in �nite populations. This
result was also corroborated by numerical simulations. That study provides
us with an analytical result that a sampling-based recombination is subject
to genetic drift, and leads to loss of population diversity.

Selection Drift At the same time, a recent study on the extinction of
subpopulations on a simple bimodal equi-�tness model investigated the drift
e�ect of the selection operator [56]. It considered the application of selection
on �nite populations, when the �tness values of the di�erent attractors were
equal (i.e., eliminating the possibility of a take-over e�ect), and argued that
a neutral e�ect (drift) would occur, pushing the population into a single
attractor. The latter study indeed demonstrated this e�ect of selection drift

in ES, which resulted in a convergence to an equilibrium distribution around
a single attractor. It was also shown that the time of extinction increases
proportionally with µ. The analysis was conducted by means of Markov
chain models, supported by statistical simulations.
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Corollary 2.4.7. Evolution Strategies that employ �nite populations are

typically underposed to several e�ects that are responsible for the loss of pop-

ulation diversity. It has been shown that the standard selection mechanisms

may lead to a fast take-over e�ect. In addition, we argued that both the

recombination and the selection operators experience their own drift e�ects
that lead to population diversity loss. We conclude that an Evolution Strategy

with a small population is likely to encounter a rapid e�ect of diversity loss.

2.4.2 Point of Reference: Diversity Loss within GAs

Mahfoud devoted a large part of his thesis to studying population diver-
sity within GAs [37]. He concluded that three main components can be
attributed to the e�ect of population diversity loss within GAs:

• Selection Pressure The traditional GA applies a probabilistic se-
lection mechanism, namely the Roulette-Wheel Selection (RWS). This
mechanism belongs to a broad set of selection mechanisms which follow
the �tness-proportionate selection principle. Selection pressure is thus
associated with the 1st moment of the selection operator. It has been
demonstrated by Mahfoud [37] that the selection pressure, or equiva-
lently the non-zero expectation of the selection operator, prevents the
algorithm from converging in parallel into more than a single attractor.

• Selection Noise Selection noise is associated with the 2nd moment of
the selection operator, or its variance. Mahfoud [37] demonstrated that
the high variance of the RWS, as well as of other selection mechanisms,
is responsible for the fast convergence of a population into a single
attractor, even when there exists a set of equally �t attractors. We
consider this e�ect as a genetic drift in its broad de�nition - sampling
error of a distribution - although it was not explicitly referred to as
such by Mahfoud.

• Operator Disruption Evolutionary operators in general, and themu-
tation and recombination operators in particular, boost the evolution
process toward exploration of the search space. In that sense, they
have a constructive e�ect on the process, since they allow locating new
and better solutions. However, their action also has a destructive ef-
fect. This is due to the fact that by applying them good solutions that
have been located previously might be lost. In that sense, they elimi-
nate competition between highly �t individuals, and "assist" some of
them to take-over. The mutation operator usually has a small e�ect,
since it acts in small steps - low mutation probability in the traditional
GA, which means infrequent occurrence of bit �ips. Thus, the muta-
tion operator can be considered to have a negligible disruption. The
recombination operator, on the other hand, has a more considerable
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e�ect. In the GA �eld, where the crossover operator is in use (single-
point, two-point or n-point crossovers), it has been shown to have a
disruptive nature by breaking desired patterns within the population
(the well known Schema Theorem discusses the schema disruption by
the crossover operator and states that schemata with high de�ning
length will most likely be disrupted by the crossover operator; see,
e.g., [22]).

It should be noted that an equivalent ES disruptive-recombination ef-
fect was analyzed in [57], and was shown to boost the extinction of
subpopulations located around a basin of attraction. Furthermore, it
was observed that by omitting the recombination operator the stability
of the subpopulations was indeed strengthened.

2.4.3 Neutrality in ES Variations: Mutation Drift

The mutation operator, the de�ning operator of Evolution Strategies, applies
normally-distributed variations of �nite sample sizes, and thus is expected
to experience sampling errors as the sample sizes decrease. These sampling
errors lead to an undirected movement of the population center of mass,
with speed which depends on the population size. We shall call this e�ect
mutation drift.

Simulations In order to demonstrate and analyze this mutation drift ef-
fect, we conducted simulations on the following basic ES model: The par-
allel evolution of several populations in an n-dimensional space, based on
sequential normally-distributed variations (with a �xed identity matrix as
the covariance of the distribution), without selection nor recombination.
The ES variation can be then considered as a continuous random walk of
µ individuals in an n-dimensional space. Essentially, this corresponds to
mutation-only ES of multiple populations.

We simulated 10 simultaneously evolving populations, for three test-cases
of population sizes: µ1 = 10, µ2 = 100, and µ3 = 1000, subject to three
space dimensions: n1 = 1, n2 = 10, and n3 = 1000. For each simulation,
we measured the distance of the population mean, or center of mass, to
the starting point, as a function of generational steps. More precisely, we
measured the location of the population mean for n1, and the Euclidean

distance from the origin for {n2, n3}. Figure 2.2 presents the outcome of
these calculations. It is easy to observe in those simulations a similar trend
to the equivalent simulations of Section 2.2.1: The center of mass strongly
drifts away from the origin when the population is small, and shows the
contrary behavior when the population is large. We therefore conclude that
mutation drift is very likely to occur in small population sizes, and is not
likely to occur in large population sizes.
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Figure 2.2: Illustration of the mutation drift e�ect in ES, for 10 simultane-
ously evolving populations, as a function of population size [µ1 = 10 (left),
µ2 = 100 (center), and µ3 = 1000 (right)] and landscape dimensionality
[n1 = 1 (top), n2 = 10 (center), and n3 = 1000 (bottom)]. The vertical axes
correspond to the location of the center of mass of the population (for
n1 = 1, top row) or distance from the origin to the center of mass of
the population (for n2 = 10 or n3 = 1000, in the center or bottom rows,
respectively). The horizontal axis corresponds to the generational step of
the calculation.

We thus demonstrated here that the center of mass of a small ES pop-
ulation is subject to a so-called mutation drift. This is an equivalent e�ect
to the genetic drift of alleles, as described in Section 2.2.1. We claim that
it allows for easy translation of small populations from one location to an-
other, having the potential to boost fast and e�cient speciation. Therefore,
we argue that drift in this context can be a blessing for the fast formation
of species in niching.

Since small populations are typically employed by Evolution Strategies,
and especially by the derandomized variants, we consider this e�ect of muta-
tion drift as a positive potential component for niching with ES. This result
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provides us with further motivation to introduce DES with small populations
into the niching framework.

2.5 Classical Niching Techniques

Despite the fact that the motivation for multimodal optimization is beyond
doubt, and the biological inspiration is real, there is no unique de�nition of
the mission statement for niching techniques. There have been several at-
tempts to provide a proper de�nition and functional speci�cation for niching;
we review some of them here:

1. Mahfoud [37] chose to put emphasis on locating as well as maintaining
good optima, and formulated the following:

The litmus test for a niching method, therefore, will be
whether it possesses the capability to �nd multiple, �nal so-
lutions within a reasonable amount of time, and to maintain
them for an extended period of time.

2. Beyer et al. [58] put forward also the actual maintenance of population
diversity:

Niching : process of separation of individuals according to
their states in the search space or maintenance of diversity by
appropriate techniques, e.g. local population models, �tness
sharing, or distributed EA.

3. Preuss [59] considered the two de�nitions mentioned above, and pro-
posed a third:

Niching in EAs is a two-step procedure that (a) concurrently
or subsequently distributes individuals onto distinct basins
of attraction and (b) facilitates approximation of the corre-
sponding (local) optimizers.

GA Niching Methods Niching methods within Genetic Algorithms have
been studied during the past few decades, initially triggered by the necessity
to promote population diversity within EAs. The research has yielded a
variety of di�erent methods, which are the vast majority of existing work on
niching in general. The remainder of this section will focus on GA niching
techniques, by providing a short overview of the main known methods, with
emphasis on the important concepts of Sharing and Crowding. This survey
is mainly based on [37] and [60].
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2.5.1 Fitness Sharing

The sharing concept was one of the pioneering niching approaches. It was
�rst introduced by Holland in 1975 [4], and later implemented as a nich-
ing technique by Goldberg and Richardson [61]. This strong approach of
considering the �tness as a shared resource has essentially become
an important concept in the broad �eld of Evolutionary Algorithms, and
laid the foundations for various successful niching techniques for multimodal
function optimization, mainly within GAs. A short description of the �tness
sharing mechanism follows.

The basic idea of �tness sharing is to consider the �tness of the land-
scape as a resource to be shared among the individuals, in order to decrease
redundancy in the population. Given the similarity metric of the popula-
tion, which can be genotypic or phenotypic, the sharing function is de�ned
as follows:

sh(di,j) =

{
1−

(
di,j
ρ

)αsh

if di,j < ρ

0 otherwise
(2.10)

where di,j is the distance between individuals i and j, ρ (traditionally noted
as σsh) is the �xed radius of every niche, and αsh ≥ 1 is a control parameter,
typically set to 1. Using the sharing function, the niche count is given by

mi =
N∑
j=1

sh(di,j) (2.11)

Let an individual raw �tness be denoted by fi, then the shared �tness is
de�ned by:

fshi =
fi
mi

(2.12)

assuming that the �tness is strictly positive and subject to maximization.
The evaluation of the shared �tness is followed by the selection phase, which
is typically based on the roulette wheel selection (RWS) operator [22]; The
latter takes into consideration the shared �tness. Thus, the sharing mecha-
nism practically punishes individuals that have similar members within the
population via their �tness, and by that it aims at reducing redundancy in
the gene pool, especially around the peaks of the �tness landscape.

One important auxiliary component of this approach is the niche radius,
ρ. Essentially, this approach makes a strong assumption concerning the
�tness landscape, stating that the optima are far enough from one another
with respect to the niche radius, which is estimated for the given problem
and remains �xed during the course of evolution. This poses the so-called
niche radius problem, to be discussed later, especially in Chapters 3 and 4.

It is important to note that the formulas for determining the value of ρ,
which will be given in Chapter 3, are dependent on q, the number of peaks of
the target function. Hence, a second assumption is that q can be estimated.
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In practice, an accurate estimation of the expected number of peaks q
in a given domain may turn out to be extremely di�cult. Moreover, peaks
may vary in shape, and this would make the task of determining ρ rather
complicated. This provides us with the motivation to treat the issue of niche
shapes in Chapter 4.

In the literature, several GA niching sharing-based techniques, which
implement and extend the basic concept of sharing, can be found [37, 61,
62, 63, 64, 65, 66]. Furthermore, the concept of sharing was successfully
extended to other "yields of interest", such as concept sharing [38].

2.5.2 Dynamic Fitness Sharing

In order to improve the sharing mechanism, a dynamic approach was pro-
posed. The dynamic niche sharing method [64], which extended the �tness
sharing technique, aimed at dynamically recognizing the q peaks of the form-
ing niches, and based on that information classi�ed the individuals as either
members of one of the niches, or as members of the "non-peaks domain".

Explicitly, let us introduce the dynamic niche count :

mdyn
i =

{
nj if individual i is within dynamic niche j
mi otherwise (non-peak individual)

(2.13)

where nj is the size of the jth dynamic niche (i.e., the number of individuals
which were classi�ed to niche j), and mi is the standard niche count, as
de�ned in Eq. 2.11.

The shared �tness is then de�ned as follows:

fdyni =
fi

mdyn
i

(2.14)

The identi�cation of the dynamic niches can be carried out by means of
a greedy approach, as proposed in [64] as the Dynamic Peak Identi�cation
(DPI) algorithm (see Algorithm 4). As in the original �tness sharing tech-
nique, the shared �tness evaluation is followed by the selection phase, typ-
ically implemented with the RWS operator. Thus, this technique does not
�xate the peak individuals, but rather provides them with an advantage in
the selection phase, which is probability-based within GAs.

2.5.3 Clearing

Another variation to the �tness sharing technique, called clearing, was in-
troduced by Petrowski [65] at the same time as the dynamic �tness sharing

[64]. The essence of this mechanism is the 'winner takes it all' principle, and
its idea is to designate a speci�c number of individuals per niche, referred
to as winners, which could enjoy the resources of that niche. This is equiva-
lent to the introduction of a "death penalty" to the losers of the niche, the
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Algorithm 4 Dynamic Peak Identi�cation (DPI)
input: population Pop, number of niches q, niche radius ρ

1: Sort Pop in decreasing �tness order
2: i := 1
3: NumPeaks := 0
4: DPS := ∅ {Set of peak elements in population}
5: while NumPeaks ̸= q and i ≤ popSize do
6: if Pop[i] is not within sphere of radius ρ around peak in DPS then
7: DPS := DPS ∪ {Pop[i]}
8: NumPeaks := NumPeaks+ 1
9: end if
10: i := i+ 1
11: end while

output: DPS

individuals of each niche which lose the generational competition to the ac-
tual peak-individuals. Following a radius-based procedure of identifying the
winners and losers of each niche in each generation, the winners are assigned
with their raw-�tness values, whereas all the other individuals are assigned
with zero �tness. This is called the clearing phase. The selection phase,
typically based on the RWS operator, considers de facto only the winners of
the di�erent niches. The allowed number of winners per niche, also referred
to as the niche capacity , is a control parameter that re�ects the degree of
elitism. In any case, as in previous techniques, the peaks are never �xated,
and are subject to the probabilistic selection of the GA.

This methods was shown to outperform the �tness sharing technique on
a speci�c set of low-dimensional test problems [65].

2.5.4 Crowding

Crowding was one of the pioneering methods in this �eld, as introduced by
de Jong in 1975 [67]. The crowding approach aimed at reducing changes
in the population distribution between generations, in order to prevent pre-
mature convergence; it does so by applying restricted replacement. Next, we
will describe the method in more detail.

Given the traditional GA, a proportion G of the population is selected
in each generation via �tness-proportionate selection to undergo variations
(i.e., crossover and mutation) - out of which a part is chosen to die and
to be replaced by the new o�spring. Each o�spring �nds the individuals it
replaces by taking a random sample of CF (referred to as crowding factor)
individuals from the population, and replacing themost similar individual
from the sample. An appropriate similarity metric should be chosen.

The crucial point of this niching mechanism is the calculation of the
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Algorithm 5 Deterministic Crowding: Replacement Selection
1: Select two parents, p1 and p2, randomly, without replacement
2: Generate two variations, c1 and c2
3: if d(p1, c1) + d(p2, c2) ≤ d(p1, c2) + d(p2, c1) then
4: if f(c1) > f(p1) then replace p1 with c1
5: if f(c2) > f(p2) then replace p2 with c2
6: else
7: if f(c2) > f(p1) then replace p1 with c2
8: if f(c1) > f(p2) then replace p2 with c1
9: end if

so-called crowding distance between parents and o�spring, in order to
control the change rate between generations. A di�erent use of the crowding
distance, applied among individuals of the same generation and assigned
with reversed ranking, will be revisited in the context of Evolutionary Multi-
Objective Optimization in Chapter 5; In the context of niching see also Deb's
"Omni-Optimizer" ([68] and Section 5.2.1).

Mahfoud, who analyzed the crowding niching technique [37], concluded
that it was subject to disruptive e�ects, mainly drift, which prevented it
from maintaining more than two peaks. He then proposed a mechanism
called deterministic crowding, as an improvement to the original crowding
niching technique. The proposed procedure applies variation operators to
pairs of individuals in order to generate their o�spring, who are then all
evaluated with respect to the crowding distance, and undergo replacement

selection (see Algorithm 5, which assumes maximization).

2.5.5 Clustering

The application of clustering for niching is very intuitive from the compu-
tational perspective, as well as straightforward in its implementation. Yin
et al. [62] proposed a clustering framework for niching with GAs, which we
describe here brie�y. A clustering algorithm, such as the K-Means algo-
rithm [69], �rst partitions the population into niches, and then considers the
centroids, or center points of mass, of the newly partitioned subpopulations.

Let dic denote the distance between individual i and its centroid, and
let fi denote the raw �tness of individual i. Assuming that there are nc
individuals in the niche of individuals i, its �tness is then de�ned as:

fClustering
i =

fi
nc · (1− (dic/2dmax)

α)
, (2.15)

where dmax is the maximum distance allowed between an individual and its
niche centroid, and α is a de�ning parameter. It should be noted that the
clustering algorithm uses an additional parameter, dmin, for determining the
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minimal distance allowed between centroids, playing an equivalent role to
the niche radius ρ of the sharing-based mechanisms.

This method is often subject to criticism for its strong dependency on
a relatively large number of parameters. However, this clustering technique
has become a popular kernel for niching with EAs, and its application was
reported in various studies (see, e.g., [56, 70, 71, 72, 73, 74, 75]).

2.5.6 The Sequential Niche Technique

The straightforward approach of iteration can be used to locate sequentially
multiple peaks in the landscape, by means of an iterative local search [76].
This procedure is blind to any information gathered in previous searches,
and sequentially restarts stochastic searches, hoping to hit a di�erent peak
every run. Obviously, it is likely to encounter redundancy, and the number
of expected iterations is then increased by a factor. A redundancy factor
can be estimated if the peaks are of equal height (equi-�tness landscape),
i.e., the probability to converge into any of the q peaks is equal to 1/q:

R =

q∑
i=1

1

i

For q > 3, this can be approximated by:

R ≈ γ + ln (q), (2.16)

where γ ≈ 0.577 is the Euler-Mascheroni constant. This redundancy fac-

tor remains reasonably low for any practical value of q, but is expected to
considerably increase if all optima are not equally likely to be found.

On a related note, we would like to mention a multi-restart with increas-
ing population size approach that was developed with the CMA algorithm
[77]. The latter aims at attaining the global minimum, while possibly visit-
ing local minima along the process and restarting the algorithm with a larger
population size and a modi�ed initial step-size. It is not de�ned as a niching
technique and does not target optima other than the global minimum, but
it can capture sub-optimal minima during its search.

Beasley et al. extended the naive iteration approach, and developed the
so-called Sequential Niche technique [78]. This method, in contrast to the
other niching methods presented earlier, does not modify the genetic op-
erators nor any characteristics of the traditional GA, but rather creates a
general search framework suitable for locating multiple solutions. By means
of this method the search process turns into a sequence of independent runs
of the traditional GA, where the basic idea is to suppress the �tness function
at the observed optimum that was obtained in each run, in order to prevent
the search from revisiting that optimum.
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In further detail, the traditional GA is run multiple times sequentially:
given the best solution of each run, it is �rst stored as a possible �nal solution,
and secondly the �tness function is arti�cially suppressed in all the points
within the neighborhood of that optimum up to a desired radius. This
modi�cation is done immediately after each run. Its purpose is to discourage
the following runs from revisiting these optima, and by that to encourage the
exploration of other areas of the search landscape - aiming at obtaining all
its optima. It should be noted that each function modi�cation might yield
arti�cial discontinuities in the �tness landscape. This method focuses only on
locating multiple optima of the given search problem, without considering the
concepts of parallel evolution and subpopulations formation. In that sense,
it has been claimed that it could not be considered as a niching method, but
rather as a modi�ed iterated search.

2.5.7 The Islands Model

This is probably the most intuitive niching approach from the biological
perspective, directly inspired by organic evolution. Also referred to as the
Regional Population Model, this approach (see, e.g., [79, 80, 81]) simulates
the evolution of subpopulations on remote computational units (independent
processors), aiming at achieving a speciation e�ect bymonitoring the gene
�ow. The population is divided into multiple subpopulations, which evolve
independently for a �xed number of generations, called isolation period. This
is followed by a phase of controlled gene �ow, or migration, when a portion
of each subpopulation migrates to other nodes.

The genetic diversity and the amount of information exchange between
subpopulations are determined by the following parameters - the number
of exchanged individuals, the migration rate, the selection method of the
individuals for migration (uniformly at random, or elitist �tness-based ap-
proach), and the scheme of migration, e.g., complete net topology, ring topol-
ogy, or neighborhood topology.

2.5.8 Other GA-Based Methods

Tagging (see, e.g., [82, 83]) is a mechanism that aims at improving the
distance-based methods of �tness sharing and crowding, by labeling indi-
viduals with tag-bits. Rather than carrying out distance calculations, the
tag-bits are employed for identifying the subpopulations, enforcing mating

restrictions, and then implementing the �tness sharing mechanism. An indi-
vidual is classi�ed to a subpopulation by its genetic inheritance, so to speak,
which is subject to generational variations, rather than by its actual spatial
state. This concept simpli�es the classi�cation process, and obviously re-
duces the computational costs per generation, but it also introduces a new
bio-inspired approach into niching: individuals belong to a species because
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their parents did, and not because they are currently adjacent to a "peak
individual", for instance. This technique was shown in [82] to be a rather
e�cient implementation of the sharing technique.

A complex subpopulation di�erentiation model, the so-called Multina-
tional Evolutionary Algorithm, was presented in [84]. This original tech-
nique considers a world of "nations", "governments", and "politicians", with
dynamics dictated by migration of individuals, merging of subpopulations,
and selection. Additionally, it introduces a topology-based auxiliary mech-
anism of sampling, which detects whether feasible solutions share the same
basin of attraction. Due to the curse of dimensionality, this sampling-based
mechanism is expected to lose its e�ciency in high-dimensional landscapes.

Stoean et al. [85] constructed the so-called Elitist Generational Ge-
netic Chromodynamics Algorithm. The idea behind this radius-based
technique was the de�nition of a mating region, a replacement region, and a
merging region �with appropriate mating-, replacement-, and merging-radii
� which dictates the dynamic of the genetic operations.

Chapter 4 will elaborate furthermore on speci�c GA-based niching tech-
niques in the context of the so-called niche radius problem.

2.5.9 Miscellaneous: Mating Schemes

It has been observed that once the niche formation process starts, i.e., when
the population converges into the multiple basins in the landscape, cross-
breeding between di�erent niches is likely to fail in producing good o�spring.
In biological terms, this is the elimination of the divergence, by means of
hybridization, in the secondary contact phase, as discussed in Section
2.2.2.

Deb and Goldberg [54] proposed a so-called mating restriction scheme,
which poses a limitation on the choice of partners in the reproduction phase
and prevents recombination between competing niches. They used a distance
measure, subject to a distance threshold which was set to the niche radius,
and showed that it could be used to improve the �tness sharing algorithm.

Mahfoud [37] proved that the mating restriction scheme of Deb and Gold-
berg was not su�cient per se in maintaining the population diversity in GA
niching. A di�erent approach of Smith and Bonacina [86], however, consid-
ered an Evolutionary Computation Multi-Agent System, as opposed to the
traditional centralized EA, and did manage to show that the same mating
restriction scheme in an agent-based framework was capable in maintaining
diversity and converging with stability to the desired peaks.

From the biological perspective, the mating restriction scheme is obvi-
ously equivalent to keeping the geographical isolation, or the barrier to gene
�ow, in order to allow the completion of the speciation phase. As discussed
earlier, the geographical element in organic evolution is the crucial compo-
nent which creates the conditions for speciation, and it is not surprising that
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arti�cial niching techniques choose to enforce it, by means of mechanisms
such as the niche radius or the mating restriction scheme.

2.6 Niching in Evolution Strategies

Researchers in the �eld of Evolution Strategies initially showed no particular
interest in the �eld of niching, leaving it essentially for Genetic Algorithms.
An exception would be the employment of island models. Roughly speaking,
classical niching mechanisms such as �tness sharing, which rede�ne the selec-
tion mechanism, are likely to interfere with the core of Evolution Strategies
� the self-adaptation mechanism � and thus doomed to experience problems
in a straightforward implementation. Manipulations of �tness values are
usually not suitable for Evolution Strategies, as in the case of constraints
handling: death-penalty is typically the preferred approach for constraints
violation in ES, rather than a continuous penalty as used in other EAs, in
order to avoid the introduction of disruptive e�ects to the self-adaptation
mechanism (see, e.g., [34, 87]). Therefore, niching with Evolution Strategies
would have to be addressed from a di�erent direction. Moreover, the di�er-
ent nature of the ES dynamics, throughout the deterministic selection and
the mutation operator, suggests as well that a di�erent treatment is required
here.

There are several, relatively new, niching methods that have been pro-
posed within ES, mostly clustering-based [56, 73, 74]. A di�erent approach,
which preceded this thesis, was presented in [88, 89, 90].

2.7 Discussion and Mission Statement

Niching techniques, following somehow various mission statements, intro-
duce a large variety of approaches, some of which are more biologically in-
spired, whereas others are multimodal-optimization oriented. In both cases,
those techniques were usually tested on low-dimensional arti�cial land-
scapes, and the application of these methods to real-world landscapes was
hardly ever reported. We claim that niching methods should be implemented
also for attaining multiple solutions in high-dimensional real-world problems,
serving the decision makers by providing them with the choice of optimal
solutions, and representing well Evolutionary Algorithms in multimodal do-
mains. By our humble reckoning, the multimodal front of real-world applica-
tions, i.e. multimodal real-world problems which demand multiple optimal
solutions, should also enjoy the powerful capabilities of Evolution Strategies,
as other fronts do, e.g., multi-objective domains and constrained domains.

On a di�erent note, Preuss, in an important paper [59], raised the ques-
tion: �Under what conditions can niching techniques be faster than iterated

local search algorithms?�. Considering a simpli�ed model, and assuming the
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existence of an e�cient basin identi�cation method, he managed to show
that it pays o� to employ Evolutionary Algorithms niching techniques on
landscapes whose basins of attraction vary signi�cantly in size. However,
the original question in its general form remained open.

Mahfoud [91] drew a comparison of parallel versus sequential niching
methods, while considering �tness sharing, deterministic crowding, sequen-
tial niching, and parallel hillclimbing. Generally speaking, he concluded that
parallel niching GAs outperform parallel hillclimbers on a hard set of prob-
lems, and that sequential niching is always outperformed by the parallel
approaches.

Obviously, there is no free lunch, and there is no best technique, espe-
cially in niching. In this context, local search capabilities should not be
underestimated, and population diversity preservers should not be overesti-
mated. We claim that like any other complex component in organic as well
as arti�cial systems - the success of niching is about the subtle interplay
between the di�erent, sometime con�icting, driving e�ects.

We thus choose to adopt Preuss' mission statement, and de�ne the chal-

lenge in niching as follows:

Attaining the optimal interplay between partitioning the
search space into niches occupied by stable subpopula-
tions, by means of population diversity preservation, and
exploiting the search in each niche by means of a highly
e�cient optimizer with local-search capabilities.



All animals are equal,

but some animals are more equal than others.

Animal Farm; George Orwell

Chapter 3

Niching with Derandomized
Evolution Strategies

3.1 General

Following our mission statement, as presented in Section 2.7, we would like
to construct a generic niching framework which o�ers the combination of
population diversity preservation and local-search capabilities. We consider
Derandomized Evolution Strategies as the best choice for that purpose, as
EA variants with local search characteristics (see our discussion in Section
1.4.6). Furthermore, DES typically employ small populations, which was
shown to be a potential advantage for a niching technique, as it can boost
the speciation e�ect (Section 2.4.3). Thus, we are now challenged to complete
the framework by introducing a mechanism for partitioning the search space
into "ecological optima", and stimulating population diversity preservation.

We restrict this chapter to the scope of niching with a �xed niche radius,
assuming that the landscapes under investigation would not dramatically
su�er from the so-called niche-radius assumptions. Chapter 4 will extend
this framework to self-adaptive approaches, which will aim at treating these
assumptions.

This chapter presents our proposed algorithm, introduces our test bed of
arti�cial landscapes as well as the performance criteria, and �nally discusses
the numerical results of our calculations.

3.2 The Proposed Algorithm

The advent of derandomized Evolution Strategies allows successful global
optimization with minimal requirements concerning exogenous parameters,
mostly without recombination, and with a low number of function evalua-
tions. In particular, consider the (1 +, λ) derandomized ES variants presented
in Chapter 1. In the context of niching, this generation of modern ES vari-

57



58 Chapter 3. Niching with Derandomized Evolution Strategies

ants allows the construction of fairly simple and elegant niching algorithms.
Next, we outline our proposed method.

Our niching technique is based upon interacting search processes, which
simultaneously perform a derandomized (1, λ) or (1 + λ) search in di�erent
locations of the landscape. In case of multimodal landscapes these search
processes are meant to explore di�erent attractor basins of local optima.

An important point in our approach is to strictly enforce the �xed alloca-
tion of the population resources, i.e. number of o�spring, per niche. The idea
is thus to prevent a take-over scenario, in which a subpopulation located at
a �tter optimum generates more o�spring in comparison to competing sub-
populations. The biological idea behind this �xed allocation of resources
lies in the concept of limited hosting capacities of given ecological niches, as
introduced in Chapter 2.

The speciation interaction occurs every generation when all the o�spring
are considered together to become niches' representatives for the next iter-
ation, or simply the next search points, based on the rank of their �tness
and their location with respect to higher-ranked individuals. We focus in
a simple framework without recombination (µ = 1), whereas niching with
recombination will be considered in the speci�c context of Chapter 5.

3.2.1 Niching with (1 +, λ) DES Kernels

Given q, the estimated/expected number of peaks, q + p �D-sets� are ini-
tialized, where a D-set is de�ned as the collection of all the dynamically
adapted strategy as well as decision parameters of the derandomized algo-
rithm, which uniquely de�ne the search at a given point of time. These
parameters are the current search point, the mutation vector / covariance
matrix, the global step-size, as well as other auxiliary parameters. At every
point in time the algorithm stores exactly q + p D-sets, which are associ-
ated with q + p search points: q for the peaks and p for the �non-peaks
domain�. The (q+1)th...(q+ p)th D-sets are individuals which are randomly
re-generated every epoch, i.e. a cycle of κ generations, as potential candidates
for niche formation. This is basically a quasi-restart mechanism, which al-
lows new niches to form dynamically. We stress that the total number of
function evaluations allocated for a run should depend on the number of
desired peaks, q, and not on p. Setting the value of p essentially re�ects the
following dilemma: Applying a wide restart approach for further exploring
the search space, versus exploiting computational resources for the existing
niches. In any case, due to the curse of dimensionality, p loses its signi�cance
as the dimension of the problem increases.

Until the stopping criterion is met, the following procedure takes place.
Each search point samples λ o�spring, based on its evolving D-set. After
the �tness evaluation of the new λ · (q+p) individuals, the classi�cation into
niches of the entire population is obtained in a greedy manner, by means of
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Algorithm 6
(
1 +, λ

)
-DES Niching with a Fixed Niche Radius

1: for i = 1 . . . (q + p) search points do
2: Generate λ samples based on the D-set of i
3: end for
4: Evaluate �tness of the population
5: Compute the Dynamic Peak Set (DPS) with the DPI Algorithm
6: for all elements of DPS do
7: Set peak as a search point
8: Inherit the D-set and update it respectively
9: end for
10: if NDPS=size of DPS < q then
11: Generate q −NDPS new search points, reset D-sets
12: end if
13: if gen mod κ ≡ 0 then
14: Resample the (q + 1)th . . . (q + p)th search points
15: end if

the DPI routine [64] (Algorithm 4). The latter is based on the �xed niche
radius ρ. The peaks then become the new search points, while their D-sets
are inherited from their parents and updated respectively.

We would like to point out the dynamic nature of the subpopulations
dynamics. Due to the greedy classi�cation to niches, which is carried out ev-
ery generation, some niches can merge in principle, while all the individuals,
except for the peak individual, die out in practice. Following our principle of
�xed resources per niche, only the peak individual will be sampled λ times
in the following generations. In socio-biological terms, the peak individual
could be associated with an alpha-male, which wins the local competition
and gets all the sexual resources of its ecological niche.

A pseudo-code for the niching routine is presented as Algorithm 6.

Sizing the Population We follow the recommended population size for
(1, λ) derandomized ES (see, e.g., [25]), and set λ = 10. On this note, we
would like to mention a theoretical work on sizing the population in a deran-
domized (1, λ) ES with respect to the local progress [92]. The latter work
obtained theoretical results showing that the local serial progress is maxi-
mized when the expected progress of the second best individual vanishes.
These results allowed for the construction of a population size adaptation
scheme, which sets the value of λ as a function of the �tness di�erence of the
second �ttest o�spring and its parent. This adaptation scheme was shown
to perform well on a set of simple theoretical landscapes [92].
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3.3 Niche Radius Calculation

The original formula for the niche radius ρ, for phenotypic sharing in GAs,
was derived by Deb and Goldberg [54]. Analogously, by considering the ES
decision space as the GA decoded parameter space, the same formula can be
applied to optimization tasks de�ned over continuous domains, by employing
the Euclidean metric. Given q, the number of peaks in the solution space,
every niche is considered to be surrounded by an n-dimensional hypersphere
with radius ρ, which occupies 1

q of the entire volume of the space. The
volume of the hypersphere which contains the entire space is

V = crn, (3.1)

where c is a constant, given explicitly by

c =
π

n
2

Γ(n2 + 1)
, (3.2)

with Γ(n) as de�ned in Eq. 1.36. Given lower and upper bound values,
{xk,min, xk,max}, of each coordinate in the decision parameters space, r is
de�ned as follows:

r =
1

2

√√√√ n∑
k=1

(xk,max − xk,min)2 (3.3)

Upon dividing the volume into q parts, we may write

cρn =
1

q
crn, (3.4)

which yields

ρ =
r
n
√
q

(3.5)

Hence, by applying this niche radius approach, two assumptions are made:

1. The expected/desired number of peaks, q, is given or can be estimated.

2. All peaks are at least in distance 2ρ from each other, where ρ is the
�xed radius of every niche.

3.4 Experimental Procedure

In order to test our proposed algorithmic niching framework, we would like
to apply them to a test suite of arti�cial landscapes. Their application to
Quantum Control landscapes will be reported in Part II.

We describe here our experimental procedure. We begin by discussing
the construction of our test suite, and then present the numerical observation
of our calculations.
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3.4.1 Multi-Modal Test Functions

The choice of a numerical testbed for evaluating the performance of search or
optimization methods is certainly one of the core issues among the scholars
in the community of algorithms and Operations Research.

In a benchmark article, Whitley et al. [11] criticized the commonly tested
arti�cial landscapes in the Evolutionary Algorithms community, and o�ered
general guidelines for constructing test problems. We state these guidelines
here:

1. Test suites should contain problems that are resistant to hill-climbers.
Hill-climbing strategies, including line search, are typically faster than
EAs, when they are successful. Hence, it is justi�ed to test EAs on
landscapes which cannot be easily hill-climbed.

2. Test suites should contain problems that are non-linear, non-separable,

and non-symmetric.

3. Test suites should contain scalable functions. The dimensionality of
the search space is an important issue, and thus should be tested ac-
cordingly.

4. Test suites should contain problems with scalable evaluation cost. The
cost of some evaluation functions grows as a function of the search space
dimensionality. This typically characterizes real-world problems, and
should be considered.

5. Test problems should have a canonical form. This demand is relevant
to encoding-based algorithms, such as GAs.

The following remarkable e�ort was made almost a decade after that doc-
ument, when a large group of scholars in the EC community joined their
e�orts and compiled an agreed test suite of arti�cial landscapes [93], to be
tested in an open performance competition reported at IEEE CEC 2005 [35].
The latter also included multimodal functions.

The issue of developing a multimodal test suite received even less atten-
tion, likely due to historical reasons. Since multimodal domains were mainly
treated by GA-based niching methods, their corresponding test suites were
limited to low-dimensional continuous landscapes, typically with two deci-
sion parameters to be optimized (n = 2) (see, e.g., [61, 37]).

In essence, our study is the �rst to introduce EA niching methods into
high-dimensional continuous landscapes.

When compiling our test suite, we aimed at following Whitley's guide-
lines, including some traditional GA-niching test functions as well as func-
tions from [93]. The reader should keep in mind that our niching methods
will be applied on real-world landscapes in Chapters 8 and 9.
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Our test suite contains the following arti�cial multimodal continuous
functions (see Table 3.1 for their mathematical description):

• M is a basic hyper-grid multimodal function with uniformly distributed
minima of equal function value of −1. It is meant to test the stability
of a particularly large number of niches: in the interval [0, 1]n it has
5n minima. We used α = 6.

• The well known Ackley function has one global minimum, regardless
of its dimension n, which is surrounded isotropically by 2n local min-
ima in the �rst hypersphere, followed by an exponentially increasing
number of minima in successive hyperspheres. Ackley's function has
been widely investigated in the context of Evolutionary Algorithms
(see, e.g., [1]). We used c1 = 20, c2 = 0.2, and c3 = 2π.

• L - also known as F2, as originally introduced in [61] - is a sinusoid
trapped in an exponential envelope. The parameter k determines the
sharpness of the peaks in the function landscape; we set it to k = 6. L
has one global minimum, regardless of n and k. It has been a popular
test function for GA niching methods. We used l1 = 5.1, l2 = 0.5,
l3 = 4 · ln(2), l4 = 0.0667 and l5 = 0.64.

• The Rastrigin function [8] has one global minimum, surrounded by a
large number of local minima arranged in a lattice con�guration.
We also consider its shifted-rotated variant [93], with a linear trans-
formation matrix of condition number 2 as the rotation operator (see
below a note on implementation).

• The Griewank function [8] has its global minimum (f∗ = 0) at the ori-
gin, with several thousand local minima in the area of interest. There
are 4 sub-optimal minima: f̃ ≈ 0.0074 with ˜⃗x ≈

(
±π,±π

√
2 , 0, 0, 0, ...0

)
.

We also consider its shifted-rotated variant [93], with a linear transfor-
mation matrix of condition number 3 as the rotation operator (see a
note on implementation below).

• The function after Fletcher and Powell [1] is a non-separable non-linear
parameter estimation problem, which has a non-uniform distribution
of 2n minima. It has non-isotropic attractor basins. See a note on
implementation below.

A Note on Implementation Most of the data for the functions, and in
particular the translation and rotation operators, was retrieved from [93]1.
The Fletcher-Powell data (the matricesA, B and the vector α⃗) was retrieved
from [1].

1Data is available for download at http://www.ntu.edu.sg/home/epnsugan/index_

files/.
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Table 3.1 summarizes the unconstrained multimodal test func-
tions as well as their initialization intervals.

3.4.2 Performance Criteria

The traditional GA niching methods research had been strongly interested
in the distribution of the �nal population compared to a goal-distribution,
as formalized by Mahfoud (see Section 2.4). While Mahfoud's formalism
introduced a generic theoretical tool, being derived from information theory,
most of the studies considered de facto speci�c performance calculations. For
example, a very popular niching performance measurement, which satis�es
Mahfoud formalism's criteria, is the Chi-square-like performance statistic

(see, e.g., [54]). The latter estimates the deviation of the actual distribution
of individuals Ni from an ideal distribution (characterized by mean µi and
variance σ2i ) in all the i = 1 . . . q + 1 subspaces (q peak subspaces and the
non-peak subspace):

χ2 =

√√√√q+1∑
i=1

(
Ni − µi
σi

)2

, (3.6)

where the ideal-distribution characteristic values are derived per function.

Our research focuses on the ability to identify global as well as local
optima, and to converge in these directions through time, with no particular
interest in the distribution of the population. Thus, as has been done in
earlier studies of GA niching [64], we adopt the performance metric called
the maximum peak ratio statistic. This metric measures the quality as well as
the number of optima given as a �nal result by the evolutionary algorithm.
Explicitly, assuming a minimization problem, given the �tness values of the

subpopulations in the �nal population
{
f̃i

}q

i=1
, and the �tness values of the

real optima of the objective function
{
F̂i

}q

i=1
, the maximum peak ratio is

de�ned as follows:

MPR =

∑q
i=1 F̂i∑q
i=1 f̃i

, (3.7)

where all values are assumed to be strictly positive. If this is not the case in
the original parameterization of the landscape, the latter should be scaled
accordingly with an additive constant for the sake of this calculation. Also,
given a maximization problem, the MPR is de�ned as the sum of the ob-
tained optima divided by the sum of the real optima. A drawback of this
performance metric is that the real optima need to be known a-priori. How-
ever, for many arti�cial test problems these can be derived analytically, or
tight numerical approximations to them are available.
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3.4.3 New Perspective: MPR vs. Time

Although the MPR metric was originally derived to be analyzed by means
of the its saturation value, a new perspective was introduced by us in [90].
Our study investigated the MPR as a function of time, focusing on the early
stages of the run. It was shown experimentally that the time-dependent
MPR data �ts a theoretical function: the logistic curve.

The Logistic Equation A simple modeling of the organic population

growth is often described by the following di�erential equation:

dy

dt
= cy

(
1− y

a

)
, (3.8)

with the solution
y(t) =

a

1 + exp {c (t− T )}
, (3.9)

where a is the saturation value of the curve, T is its time shift, and c (in this
context always negative) determines the shape of the exponential rise.

This equation, known as the logistic equation, describes many processes
in nature. All those processes share the same pattern of behavior - growth
with acceleration, followed by deceleration and then a saturation phase.

In the context of evolutionary niching methods, we argued [90] that the
logistic parameters should be interpreted in the following way - T as the
learning period of the algorithm, and the absolute value of c as its niching
formation acceleration.

3.4.4 MPR Analysis: Previous Observation

This MPR time-dependent analysis was applied in [90] to two ES-based
niching techniques: niching with the standard-ES according to the Schwefel-
approach [94], and niching with the CMA-ES. In short, the standard-ES
based method applies the same niching framework as the one described in
this thesis except for one conceptual di�erence: it employs a (µ, λ) strategy in
each niche, subject to restricted mating. Otherwise, it employs the standard
ES operators.

We outline some of the conclusions of that study here:

1. The niching formation acceleration, expressed as the absolute value
of c, had larger values for the CMA-ES mechanism for all the test-cases.
That implied stronger niching acceleration and faster convergence.

2. A trend concerning the absolute value of c as a function of the dimen-
sionality was observed: the higher the dimensionality, the lower the
absolute value of c, i.e., the slower the niching process.



66 Chapter 3. Niching with Derandomized Evolution Strategies

3. The learning period, expressed as the value of T in the curve �tting,
got negative as well as positive values. Negative values mean that the
niches formation process, expressed as the exponential rise of the MPR,
started immediately from generation zero.

4. The averaged saturation value a, i.e., the MPR value, was larger in
all of the test-cases for the CMA-ES mechanism. In that respect, the
CMA kernel outperformed the standard-ES on the given landscapes.

The study concluded with the claim that there was a clear trade-
o� : Either a long learning period followed by a high niching ac-
celeration (CMA-ES), or a short learning period followed by a low
niching acceleration (Standard-ES).

3.5 Numerical Observation

We describe here our numerical observation with respect to the experimental
results of our 5 niching variants on the proposed test suite.

3.5.1 Modus Operandi

The 5 niching algorithms are tested on the speci�ed functions for various
dimensions. Each test case includes 100 runs per algorithm. All runs are
performed with a core mechanism of a (1 +, 10)-strategy per niche and initial
points are sampled uniformly within the initialization intervals. Initial global
step-sizes are set to 1

4 of the intervals. The parameter q is set based on a-

priori knowledge when available, or arbitrarily otherwise.
Function evaluations: the idea is to allocate a �xed number of evaluations
per peak

(
n · 104

)
, and thus each run is stopped after q · n · 104 function

evaluations.
As mentioned earlier, setting the parameter p re�ects the trade-o� be-

tween further sampling the search-space, on the expense of exploiting the
granted function evaluations at the existing attraction sites. Here, we set
p = 1, which means emphasis on the latter.

A curve �tting routine is applied to each run in order to retrieve the
characteristic parameters of its logistic curve. This routine uses the least-
squared-error method, and runs an optimization procedure to minimize it.

3.5.2 Numerical Results

The numerical results are presented at several levels:

Niching Acceleration

Table 3.2 presents the mean and the standard deviations for the absolute

value of the parameter c over 100 runs, as obtained by the curve �tting
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routine. There is a clear trend in the given numerical results - in the vast
majority of the test cases, the DR2 algorithm has the highest absolute values
of c, whereas the CMA+ has the lowest absolute values. This trend corre-
sponds to having the highest niching acceleration and the lowest niching
acceleration, respectively. Moreover, the 4 comma strategies have absolute
c values in the same order of magnitude, whereas the CMA+ typically has
a lower absolute value in comparison to them.

MPR Saturation

This scalar value represents, to some degree, the quality of the obtained
minima, and thus the �nal result of the niching process. Table 3.3 presents
the mean and the standard deviation of the saturation MPR values for the
di�erent test cases. As can be seen in this table, the CMA-

(
+,
)
kernels

achieve the highest MPR values, and thus they outperform together the
other methods with respect to the niching process. However, for the given
test cases, there is no clear winner for the MPR value.

Global Minimum

Table 3.4 contains the percentage of runs in which the global minimum was
located. M is discarded from the table, as its global minimum was always
found, by all algorithms, for every dimension n under investigation. Gener-
ally speaking, the CMA-

(
+,
)
routines, and in particular the CMA+ strategy,

were superior with respect to the other derandomized variants.
One can also observe a strong correlation between Tables 3.3 and 3.4:

Routines that obtain high MPR saturation values, i.e., locate the top-quality
peaks, typically perform well globally and locate the global minimum in a
high percentage of the runs.

The c− T Tradeo� Hypothesis

We would like to numerically assess the hypothesis claiming the existence of
a tradeo� between the learning period T and the niching acceleration c, as
speculated in [90], with respect to the 5 algorithms under investigation.

We consider two test functions of the suite, one per class: the separable
M and the non-separable GRS (the Shifted Rotated Griewank). For each we
run the algorithms for an increasing dimensionality of n = 3, 4, . . . , 30, and
obtain the MPR parameters for 100 runs - in order to plot c as a function of
T .

Figures 3.1 and 3.2 present the c−T curves forM and GRS , respectively.
The curves re�ect a clear trade-o� between c and T over the dimensions for
the algorithms for both cases (an exception: DR3 overM). We consider this
a numerical corroboration of the hypothesis: The longer the learning period,
the lower the niching acceleration.
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Table 3.2: The absolute value of the parameter c, obtained from curve
�tting: Mean and standard deviation over 100 runs.

Test-Case DR1 DR2 DR3 CMA CMA+

M : n = 3 0.107± 0.006 0.138± 0.009 0.106± 0.010 0.069± 0.005 0.054± 0.003
M : n = 10 0.059± 0.002 0.072± 0.002 0.071± 0.003 0.040± 0.001 0.015± 0.001
M : n = 40 0.027± 0.001 0.033± 0.001 0.024± 0.001 0.013± 0.001 0.003± 0.001
A : n = 3 0.153± 0.038 0.226± 0.058 0.167± 0.006 0.135± 0.033 0.048± 0.006
A : n = 10 0.063± 0.009 0.079± 0.013 0.071± 0.011 0.055± 0.011 0.017± 0.001
L : n = 3 0.164± 0.070 0.194± 0.124 0.151± 0.064 0.148± 0.047 0.063± 0.030
L : n = 10 0.150± 0.015 0.186± 0.024 0.143± 0.057 0.147± 0.016 0.040± 0.003
R : n = 3 0.022± 0.032 0.035± 0.042 0.009± 0.012 0.030± 0.024 0.010± 0.011
R : n = 10 0.046± 0.007 0.049± 0.010 0.039± 0.017 0.022± 0.007 0.016± 0.002
G : n = 3 0.012± 0.014 0.025± 0.017 0.012± 0.003 0.023± 0.040 0.006± 0.012
G : n = 10 0.031± 0.027 0.102± 0.020 0.031± 0.030 0.023± 0.003 0.019± 0.015

F : n = 3 0.022± 0.023 0.042± 0.017 0.024± 0.024 0.023± 0.025 0.015± 0.012
F : n = 10 0.054± 0.093 0.087± 0.105 0.078± 0.123 0.044± 0.083 0.022± 0.021
RRS : n = 3 0.157± 0.036 0.254± 0.053 0.178± 0.047 0.200± 0.041 0.055± 0.008
RRS : n = 10 0.072± 0.026 0.095± 0.019 0.083± 0.025 0.072± 0.027 0.020± 0.002
GRS : n = 3 0.108± 0.067 0.126± 0.074 0.118± 0.064 0.113± 0.069 0.050± 0.007
GRS : n = 10 0.056± 0.015 0.072± 0.015 0.085± 0.020 0.090± 0.012 0.020± 0.004

Table 3.3: The saturation MPR value: Mean and standard deviation over
100 runs.

Test-Case DR1 DR2 DR3 CMA CMA+

M : n = 3 1± 0 1± 0 1± 0 1± 0 1± 0
M : n = 10 1± 0 1± 0 1± 0 1± 0 1± 0
M : n = 40 0.997± 0.002 1± 0 0.988± 0.003 1± 0 1± 0
A : n = 3 0.971± 0.029 0.966± 0.028 0.960± 0.030 0.977± 0.024 0.992± 0.017
A : n = 10 0.901± 0.024 0.905± 0.025 0.901± 0.025 0.920± 0.023 0.942± 0.023
L : n = 3 0.963± 0.028 0.945± 0.038 0.953± 0.029 0.962± 0.027 0.996± 0.006
L : n = 10 0.505± 0.163 0.379± 0.153 0.167± 0.129 0.596± 0.148 0.562± 0.109
R : n = 3 0.263± 0.314 0.245± 0.036 0.233± 0.042 0.143± 0.046 0.481± 0.124
R : n = 10 0.052± 0.007 0.063± 0.007 0.055± 0.005 0.057± 0.009 0.053± 0.005
G : n = 3 0.115± 0.168 0.526± 0.470 0.366± 0.050 0.223± 0.288 0.761± 0.098
G : n = 10 0.024± 0.042 0.026± 0.047 0.066± 0.018 0.015± 0.017 0.079± 0.029

F : n = 3 0.002± 0.002 0.002± 0.002 0.002± 0.002 0.003± 0.004 0.002± 0.001
F : n = 10 0.001± 0.001 0.001± 0.001 0.001± 0.001 0.001± 0.001 0.001± 0.001
RRS : n = 3 0.409± 0.111 0.463± 0.067 0.423± 0.117 0.469± 0.103 0.563± 0.098
RRS : n = 10 0.085± 0.015 0.099± 0.019 0.078± 0.015 0.108± 0.017 0.071± 0.014
GRS : n = 3 0.072± 0.043 0.078± 0.044 0.085± 0.048 0.082± 0.036 0.108± 0.041
GRS : n = 10 0.134± 0.038 0.144± 0.037 0.122± 0.035 0.161± 0.034 0.045± 0.013
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Table 3.4: Global minimum reached in 100 runs.

Test-Case DR1 DR2 DR3 CMA CMA+

A : n = 3 100% 100% 100% 100% 100%
A : n = 10 90% 91% 90% 92% 95%
L : n = 3 93% 74% 92% 97% 100%
L : n = 10 9% 2% 0% 17% 13%
R : n = 3 20% 19% 13% 16% 48%
R : n = 10 0% 0% 0% 0% 0%
G : n = 3 13% 21% 32% 13% 88%
G : n = 10 8% 16% 4% 16% 2%

F : n = 3 100% 100% 100% 100% 100%
F : n = 10 14% 12% 15% 23% 15%
RRS : n = 3 45% 40% 39% 54% 72%
RRS : n = 10 0% 0% 0% 0% 0%
GRS : n = 3 4% 2% 4% 12% 8%
GRS : n = 10 6% 1% 3% 14% 0%

Figure 3.1: The c − T curve for M: A clear trade-o� for the di�erent al-
gorithms, except for DR3, which has a �at curve. Each data point is an
average of 100 runs, given n = 3, 4, . . . , 30.
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Figure 3.2: The c − T curve for GRS : A clear trade-o� for the 5 di�erent
algorithms. Each data point is an average of 100 runs, given n = 3, 4, . . . , 30.

3.5.3 Discussion

The elitist CMA strategy was observed to perform very well in the proposed
niching framework. A straightforward and rather intuitive explanation for
that would be its tendency to maintain convergence in any basin of attrac-
tion, versus a higher probability for the comma strategy to escape them.
Moreover, we would like to suggest another argument for the advantage of
an elitist strategy for niching. The niching problem can be considered as an
optimization task with constraints, i.e., the formation of niches that restricts
competing niches and their optimization routines from exploring the search
space freely. It has been suggested in previous studies (see, e.g., [87]) that
ES self-adaptation in constrained problems will tend to fail with a comma-
strategy, and thus a plus-strategy is preferable for such problems. We might
link this argumentation to the observation of our numerical results here, and
suggest that an elitist strategy is preferable for niching.



Adaptability is not imitation.

It means power of resistance and assimilation.

Mahatma Gandhi

Chapter 4

Self-Adaptive Niche-Radii and
Niche-Shape Approaches

4.1 General

While the motivation and usefulness of niching cast no doubt, the relax-
ation of assumptions and limitations concerning the hypothetical landscape
is much needed if niching methods are to be valid in a broader range of ap-
plications. In short, we choose to treat in this chapter the particular limiting
assumption of the �xed niche radius by introducing self-adapting niche-radii
and niche-shape mechanisms.

More speci�cally, niching techniques are often subject to criticism due
to the so-called niche radius problem. The majority of the niching meth-
ods make an assumption concerning the �tness landscape, stating that the
optima are far enough from one another with respect to the so-called niche

radius, which is estimated for the given problem and remains �xed during
the course of evolution, as outlined in Section 3.3. Obviously, there are land-
scapes for which this assumption is not applicable, and where this approach
is most likely to fail (see Figures 4.1 and 4.2 for illustration). As discussed
earlier, the task of de�ning a generic basin of attraction seems to be one of
the most di�cult problems in the �eld of global optimization.

4.1.1 Related Work

There were several GA-oriented studies which addressed this so-called niche

radius problem, aiming to relax the assumption speci�ed earlier, or even to
drop it completely. Jelasity [63] suggested a cooling-based mechanism for
the niche-radius, also known as the UEGO, which adapts the global radius
as a function of time during the course of evolution. Gan and Warwick
[72] introduced the so-called Dynamic Niche Clustering, to overcome the
radius problem by using a clustering mechanism. A complex subpopulation

71
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Figure 4.1: The Shekel function (see, e.g., [8]) in a 2D decision space: Intro-
ducing a dramatically uneven spread of optima; For more details see Table
3.1.

Figure 4.2: The Vincent function in a 2D decision space: A sine function
with a decreasing frequency.
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di�erentiation model, the so-called Multinational Evolutionary Algorithm,
was presented by Ursem [84]. It introduces a topological-based auxiliary
mechanism of sampling, which detects whether feasible solutions share the
same basin of attraction. A recent study by Stoean et al. [95] considered the
hybridization of the latter with a radius-based niching method proposed in
[85]. Finally, an iterative statistical-based approach was introduced lately
[66] for learning the optimal niche radius, without a-priori knowledge of
the landscape. It considers the �tness sharing strategy, and optimizes it
as a function of the population size and the niche radius, without relaxing
the landscape assumption speci�ed earlier � i.e., the niches are eventually
obtained using a single �xed niche radius.

4.1.2 Our Approach

Our study introduces a new concept into the niche radius problem, inspired
by the ES self-adaptation concept - an adaptive individual niche ra-
dius. The idea is that each individual, i.e., feasible solution in the arti�cial
population, updates every generation a niche radius along with its adaptive
strategy parameters. This study is an �adaptive extension� to niching with
the CMA-ES.

Two new approaches are presented here. The �rst exploits the self-
adaptation of the step-size in the CMA-ES mechanism, the cumulative step-
size adaptation (CSA) mechanism, and couples the individual niche-radius
to it. Since the step-size does not hold any further spatial information con-
cerning the landscape, the classi�cation into niches uses hyperspheres, based
on the Euclidean distance. The second approach introduces the Mahalanobis

distance into the niching mechanism, aiming to allow more accurate spatial
classi�cation by using ellipsoids which are based upon the evolving distri-
bution, rather than the uniform hyperspheres of the Euclidean metric. This
idea can be easily implemented into the CMA-ES niching routines, since the
covariance matrix of the distribution � an essential component of the Ma-
halanobis distance � is already learned by the algorithm. These two new
approaches are tested with the CMA-

(
+,
)
routines, and evaluated on a suite

of arti�cial landscapes, including problems with an uneven spread of optima
as well as with non-isotropic attractor basins.

4.2 New Proposed Approaches

In this section we present two new approaches for the adaptation of the
niches classi�cation mechanism, in the framework of niching with the CMA-
ES. Section 4.2.1 presents the self-adaptive niche radius mechanism which
is based upon the coupling to the step-size, and Section 4.2.2 introduces
niching with the Mahalanobis distance, relying on the evolving covariance
matrix.
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4.2.1 Self-Adaptive Radius: Step-Size Coupling

Aiming to follow the successful mechanism of the step-size adaptation, the
idea of this approach is to couple the niche radius to the global step-size σ,
whereas the indirect selection of the niche radius is governed by the objective
that every niche should ideally consist of λ individuals. This is implemented
by means of a quasi dynamic �tness sharing mechanism. A detailed descrip-
tion follows.

The Niching-CMA method is used as outlined earlier (Chapter 3), with
the following modi�cations. q is given as an input to the algorithm, but it is
now merely a prediction or a demand for the maximal number of solutions
the decision maker would like to obtain. Given the ith individual in the
population, a niche radius denoted by ρ0i is initialized by means of a rule
(ρ0i =

√
n ·σinit) in the beginning of the search. Its update step in generation

(g + 1) is based on the parent's radius and step-size:

ρ
(g+1)
i =

(
1− c(g+1)

i

)
· ρ(g)parent + c

(g+1)
i ·

√
n · σ(g+1)

parent (4.1)

where c(g)i ∈ [0, 1) is the individual learning coe�cient. The latter is updated

by means of the step-size di�erence, i.e., ∆σ(g+1)
i =

∣∣∣σ(g+1)
parent − σ

(g)
parent

∣∣∣:
c
(g+1)
i = γ ·

(
1− exp

{
−α ·∆σ(g+1)

i

})
(4.2)

See Figure 4.3 for an illustration. As for the constants, γ and α are set
di�erently for the two selection strategies:

γ =

{
1
5 for (1, λ) -selection
4
5 for (1 + λ) -selection

α =

{
10 for (1, λ) -selection
100 for (1 + λ) -selection

.

(4.3)
γ determines the saturation value of the learning coe�cient: Strong coupling
to the parent's step-size for the plus strategy, versus a weak coupling for
the comma strategy. α dictates the strength of the exponential convergence
towards the saturation value: Slow convergence for the plus strategy, versus a
rapid convergence for the comma strategy. This rule for parametric setting
works reliably on a wide range of problems, as we will show later. The
rational behind it stems from the di�erent niching convergence behavior of
the two strategies, as was already discussed in Section 3.5. Furthermore, we
shall discuss the use of new parameters in Section 4.4.

The DPI routine (Algorithm 4 is run using the individual niche radii,
for the identi�cation of the peaks and the classi�cation of the population.

Furthermore, introduce:

g (x, λ) = 1 + Θ (λ− x) · (λ− x)
2

λ
+Θ(x− λ) · (λ− x)2 , (4.4)
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Figure 4.3: The learning coe�cient c(g+1)
i (Eq. 4.2) is plotted as a function

of the step-size di�erence, ∆σ(g+1)
i , for the two strategies, as derived from

Eq. 4.3 � (γ, α) are substituted for the two strategies:
{(

1
5 , 10

)
,
(
4
5 , 100

)}
.

where Θ(y) is the Heaviside step function. Given a �xed λ, g (x, λ) is a
parabola with unequal branches, centered at (x = λ, g = 1) (see Figure 4.4
for illustration). The justi�cation for its geometrical asymmetry will be
described shortly. Then, by applying the calculation of the dynamic niche

count mdyn
i (Eq. 2.13), based on the appropriate radii, we de�ne the niche

�tness of individual i by:

fnichei =
fi

g
(
mdyn

i , λ
) (4.5)

We assume, again, that the raw �tness is strictly positive and subject to
maximization. Finally, the selection of the next parent in each niche, i.e.,
the so-called alpha-male of the local site, is based on this niche �tness.

Eq. 4.5 enforces the requirement for having a �xed resource of λ individ-
uals per niche, since g (x, λ) yields values greater than 1 for any niche count
di�erent than λ. The asymmetry of g (x, λ) is therefore meant to penalize
more the niches which exceed λ members, in comparison to those with less
than λ members. This equation is a variant of the dynamic shared �tness
(Eq. 2.14), and is used now in the context of niche radius adaptation.

The self-adaptive niching routine is presented in Algorithm 7.
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Figure 4.4: An illustration for g (x, λ = 10) (Eq. 4.4): A parabola with un-
even branches; The niche �tness (Eq. 4.5) is penalized more for an over-
populated niche (λ > 10) due to the steep branch, in comparison to an
underpopulated niche.

Algorithm 7 Niching-CMA with an Adaptive Niche Radius
1: for i = 1 . . . (q + p) search points do
2: Generate λ samples based on the CMA-set of i
3: Update the niche radius ρg+1

i according to Eq. 4.1
4: end for
5: Evaluate �tness of the population
6: Compute the DPS with the DPI Algorithm, based on individual radii
7: Compute the Dynamic Niche Count of every individual
8: for all elements of DPS do
9: Compute the Niche Fitness (Eq. 4.5)
10: Set individual with best niche �tness as a search point
11: Inherit the CMA-set and update it respectively
12: end for
13: if NDPS =size of DPS < q then
14: Generate q −NDPS new search points, reset CMA-sets
15: end if
16: if gen mod κ ≡ 0 then
17: Resample the (q + 1)th . . . (q + p)th search points
18: end if
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4.2.2 Mahalanobis Metric: Covariance Exploitation

Existing niching techniques, and in particular those presented in Chapter 3
and Section 4.2.1, use the Euclidean distance in the decision space for the
classi�cation of feasible solutions to the niches under formation. This ap-
proach is likely to encounter problems in high-dimensional landscapes with
non-isotropic basins of attraction. Since the CMA-ES algorithm already
learns the covariance matrix of the decision space distribution, it is worth-
while to use it for a better spatial classi�cation mechanism within the niching
framework. In essence, this can be considered as an upgrade of the niching
mechanism, as it captures a more accurate spatial formation of the niches.
Most importantly, this approach is also self-adaptive.

After giving this motivation, we proceed with discussing the details of
this idea.

The Mahalanobis Distance In the following, we consider the Maha-

lanobis distance, for instance in a probability distribution. Given a mean

vector m⃗ and a covariance matrix Σ, the Mahalanobis distance of a vector
v⃗ from the mean vector is de�ned as:

d (v⃗, m⃗) =

√
(v⃗ − m⃗)T Σ−1 (v⃗ − m⃗) (4.6)

It can be shown that the iso-distance surfaces of this metric are ellipsoids
which are centered about the mean m⃗. In the special case where Σ ∼ I
(e.g., features are uncorrelated and all variances equal) the Mahalanobis
distance reduces to the normalized Euclidean distance, and the iso-distance
surfaces become Euclidean hyperspheres. Though the Mahalanobis distance
is typically applied in statistics, it can also be applied in di�erent contexts as
a metric on vector spaces given a positive-semide�nite and symmetric matrix
Σ determining the elliptic iso-distance surfaces.

Mahalanobis CMA-ES Niching

In the context of niching, given an individual x⃗, representing a niche with
a covariance matrix Cx, we choose to de�ne, accordingly, the Mahalanobis
distance of an individual y⃗ to the niche by

d (x⃗, y⃗) =

√
(x⃗− y⃗)T Cx

−1 (x⃗− y⃗) .

Since di�erent individuals have di�erent covariance matrices, this operation
is asymmetric. Hence, the actual classi�cation into niches depends not only
on the identity of the so-called peak individuals, which are selected according
to their higher �tness, but also on their individual covariance matrices. Due
to the fact that the classi�cation itself is carried out individually by means
of independently evolving distance measures, an equivalent classi�cation by
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means of the Euclidean metric would possibly result in a di�erent outcome
when compared to this approach.

Notably, the proposed routine does not have a secondary selection mech-
anism, which was necessary for the self-adaptive niche radius approach, as
introduced in Section 4.2.1. The reason why it is not required here is that the
local shape of the attractor basins, as approximated by the CMA, is equiv-
alent to the desired shape for the niches, and thus su�cient for successful
classi�cation of individuals to the niche.

Numerical Implementation

As for the technical details, we discuss here the numerical implementation of
the Mahalanobis metric, considering the matrix inversion which is required.
We show here that the matrix inversion, in this context, can be replaced by
matrix multiplication - which leads to a signi�cant performance gain for the
dimensions that are typically under study.

In the CMA-ES mechanism, the eigenvalue-decomposition of the covari-
ance matrix C, which is calculated every generation, reads

C = BD (BD)T , (4.7)

where D = diag
(√

Λ1 ,
√
Λ2 , ...,

√
Λn

)
, with the eigenvalues {Λi}ni=1. In

order to obtain C−1, one can derive,

C−1 =
[
BD (BD)T

]−1
= BT −1DT −1D−1B−1 =

B · diag
(

1

Λ1
,
1

Λ2
, ...,

1

Λn

)
·BT

(4.8)

and thus the matrix inversion calculation can be replaced, within the CMA-
ES routine, by a matrix multiplication calculation.

Despite the fact that these two operations are equivalent in terms of
numerical complexity (see, e.g., [96]), we observe in practice a di�erence
between the two procedures for obtainingC−1. For dimensions up to n = 30,
it is observed that the multiplication procedure takes on average half the
calculation time in comparison to the inversion procedure1. Hence, it pays
o� to follow the derivation given here.

Due to numerical features of the eigenvalue-decomposition, which were
also discussed by Hansen et al. (see [16], pp. 20), but are crucial here for the
inversion operation of the covariance matrix, we introduce a lower bound to
the eigenvalues: Λmin = 10−10.

1The calculations were done with MATLAB 7.0.
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Table 4.1: Additional test functions to be minimized and initialization do-
mains.

Name Function Init Niches
S [Shekel] S (x⃗) = −

∑10
i=1

1
ki(x⃗−ai)(x⃗−ai)

T+ci
[0, 10]n 8

V [Vincent] V (x⃗) = − 1
n

∑n
i=1 sin (10 · ln(xi)) [0.25, 10]n 50

Self-Adaptive Mahalanobis Approach

The self-adaptive niche radius mechanism presented in Section 4.2.1, can
easily be adjusted to employ the Mahalanobis distance for the classi�cation of
the niches. In the context of this study, it would become a hybrid approach in
the sense that it applies both a self-adaptive niche radius and a self-adaptive
distance metric for the sake of the classi�cation phase. This hybridization
will also be considered in the experimental procedure as an independent
niching routine.

4.3 Experimental Procedure

We apply the same experimental setup of Chapter 3, with the following
modi�cations:

• We consider additional test-functions with an uneven spread of optima,
introducing a challenge in the light of the niche radius problem:

1. The Vincent function is a sine function with a decreasing fre-
quency. It has 6n global optima in the interval [0.25, 10]n.

2. The Shekel function, suggested in [8], introduces a landscape with
a dramatically uneven spread of optima. It has one global opti-
mum, and 7 ordered local optima. The Shekel data was retrieved
from [8].

Table 4.1 is an extension to Table 3.1, summarizing the additional
test-functions.

• In order to keep the behavior as simple as possible, the parameter p is
set here to p = 0 (no so-called restart mechanism).

• We keep the same experimental framework of function evaluations
granted per niche: n · 104 function evaluations are allocated per niche,
and thus a run is terminated after q · n · 104 function evaluations.

4.3.1 Numerical Observation

We discuss here the performance analysis at three levels:
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Global Minimum

Table 4.2 contains the percentage of runs in which the global minimum was
located. M and V are discarded from the table, as their global minimum
was always found, by all algorithms, for every dimension n under investi-
gation. For the comma strategy (four left columns), we observe that the
Mahalanobis metric usually improves the global optimization � both for the
�xed, as well as for the self-adaptive niche radius approaches. On the other
hand, this does not seem to be the general trend for the plus strategy - on
average the employment of the Mahalanobis distance does not improve the
global optimization. We may conclude that there is no clear 'winner', and
that the routines employing the Mahalanobis distance do not achieve a dra-
matic improvement in global optimization. This is an expected result, as the
employment of this metric assists in the formation of the niches.

MPR Saturation

Tables 4.3 and 4.4 present the mean and the standard deviation of the sat-
uration MPR values for the di�erent test cases.

We observe a trend of better performance for the routines employing the
Mahalanobis distance for both strategies. On average, the MPR values are
higher, re�ecting a better niching process.

Note that the niching routines, except for the �xed niche radius case, fail
on the Ackley landscape, i.e., they locate only the global minimum, where
all other niches are located in the global basin of attraction. This e�ect can
be explained by the strong basin of attraction of the global minimum, in
comparison to the sub-optimal minima.

Moreover, most of the MPR values for the Fletcher-Powell and shifted-
rotated Griewank test-cases are much lower than unity, due to the extreme
scaling of the landscape: It has false traps with very high function values.
Thus, upon being trapped in these local minima, the MPR value is expected
to be very low.

Niching Acceleration

The MPR analysis allows us to compare the niching acceleration of the dif-
ferent routines. Tables 4.5 and 4.6 present the mean values and the standard
deviation of the niching acceleration values for the di�erent test cases, by
means of the absolute value of the parameter c of Eq. 3.9. The curve-�tting
routine did not attain data with acceptable high quality for the Fletcher-
Powell test-case, and it su�ered from extremely large standard deviations.
We thus choose to discard it from this table.

There are some general trends in the attained data. The comma strategy
has typically higher niching acceleration values, as expected from previous
observations (Chapter 3). Within each strategy, there is a trend of higher
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Table 4.3: MPR saturation values for the (1, λ)-Strategy: Mean values and
standard deviations over 100 runs. Emphasized in bold-script are winner
algorithms with respect to the speci�ed landscape, also in reference to the
results of Table 4.4. Landscapes with several winners do not apply bold
scripts.

Test-Case CMA M-CMA S-CMA MS-CMA

M : n = 3 1± 0 1± 0 1± 0 1± 0
M : n = 10 0.994± 0.002 0.967± 0.003 1± 0 1± 0
M : n = 40 0.956± 0.006 0.953± 0.008 0.994± 0.001 0.995± 0.002
A : n = 3 0.938± 0.044 N.A. 0.860± 0.143 N.A.

A : n = 10 0.909± 0.033 N.A. N.A. N.A.

L : n = 3 0.864± 0.092 0.870± 0.106 0.713± 0.083 0.834± 0.099
L : n = 10 0.240± 0.086 0.389± 0.114 0.478± 0.080 0.564 ± 0.105

R : n = 3 0.301± 0.081 0.228± 0.063 0.159± 0.041 0.305± 0.103
R : n = 10 0.103 ± 0.045 0.062± 0.011 0.082± 0.019 0.094± 0.022
G : n = 3 0.249± 0.126 0.234± 0.045 0.283± 0.092 0.255± 0.064
G : n = 10 0.252 ± 0.169 0.195± 0.040 0.186± 0.092 0.190± 0.041
S : n = 5 0.840± 0.320 0.911± 0.307 0.819± 0.300 0.979 ± 0.067

S : n = 10 0.820± 0.722 0.931± 0.073 0.596± 0.136 0.959 ± 0.062

V : n = 3 0.972± 0.011 0.920± 0.005 0.613 ± 0.028 0.552± 0.078
V : n = 10 0.998± 0.007 0.998± 0.001 0.999± 0.001 1 ± 0

F : n = 4 0.0004± 0.001 0.0049± 0.005 0.0005± 0.001 0.0173± 0.092
F : n = 10 0.0001± 0.001 0.0002± 0.001 0.0003± 0.001 0.0004± 0.001
RSR : n = 3 0.331± 0.103 0.231± 0.041 0.138± 0.051 0.268± 0.074
RSR : n = 10 0.130 ± 0.039 0.087± 0.042 0.069± 0.019 0.093± 0.018
GSR : n = 3 0.0009± 0.001 0.0010± 0.001 0.0007± 0.001 0.0010± 0.001
GSR : n = 10 0.0001± 0 0.0001± 0 0.0001± 0 0.0001± 0

Table 4.4: MPR saturation values for the (1 + λ)-Strategy: Mean values and
standard deviations over 100 runs. Emphasized in bold-script are winner
algorithms with respect to the speci�ed landscape, also in reference to the
results of Table 4.3. Landscapes with several winners do not apply bold
scripts.

Test-Case CMA+ M-CMA+ S-CMA+ MS-CMA+

M : n = 3 1± 0 1± 0 1± 0 1± 0
M : n = 10 0.991± 0.003 0.986± 0.003 1± 0 1± 0
M : n = 40 0.975± 0.008 0.980± 0.007 1± 0 1± 0
A : n = 3 0.989± 0.026 0.999 ± 0.009 0.930± 0.030 0.937± 0.159
A : n = 10 0.946± 0.017 0.987 ± 0.019 N.A. N.A.

L : n = 3 0.959± 0.033 0.962 ± 0.036 0.819± 0.079 0.919± 0.065
L : n = 10 0.454± 0.116 0.373± 0.115 0.423± 0.108 0.432± 0.090
R : n = 3 0.528± 0.118 0.552 ± 0.107 0.163± 0.072 0.250± 0.089
R : n = 10 0.102± 0.040 0.077± 0.027 0.049± 0.009 0.053± 0.011
G : n = 3 0.326± 0.094 0.334± 0.101 0.305± 0.114 0.494 ± 0.234

G : n = 10 0.037± 0.008 0.053± 0.015 0.062± 0.019 0.060± 0.015
S : n = 5 0.681± 0.114 0.897 ± 0.109 0.920± 0.073 0.882± 0.086
S : n = 10 0.658 ± 0.054 0.957± 0.104 0.916± 0.311 0.939± 0.085
V : n = 3 0.962± 0.012 0.999 ± 0.001 0.815± 0.072 0.689± 0.114
V : n = 10 0.953± 0.016 0.990± 0.004 0.996± 0.002 0.999± 0.001

F : n = 4 0.0007± 0.001 0.862± 0.385 0.0044± 0.002 0.991 ± 0.038

F : n = 10 0.0001± 0.001 0.0001± 0.001 0.0005 ± 0.001 0.0001± 0.001
RSR : n = 3 0.486± 0.137 0.563 ± 0.140 0.135± 0.051 0.249± 0.129
RSR : n = 10 0.081± 0.030 0.080± 0.018 0.044± 0.006 0.041± 0.006
GSR : n = 3 0.0009± 0.001 0.0007± 0.001 0.008± 0.001 0.0012± 0.002

GSR : n = 10 0.0002± 0 0.0002± 0 0.0002± 0 0.0002± 0
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Table 4.5: Niching acceleration values for the (1, λ)-Strategy: Mean values
and standard deviations of the absolute value of c over 100 runs.

Test-Case CMA M-CMA S-CMA MS-CMA

M : n = 3 0.068± 0.010 0.069± 0.002 0.049± 0.007 0.060± 0.008
M : n = 10 0.038± 0.001 0.043± 0.002 0.029± 0.002 0.032± 0.001
M : n = 40 0.014± 0.001 0.014± 0.001 0.010± 0.001 0.010± 0.001
A : n = 3 0.133± 0.015 N.A. 0.035± 0.013 N.A.

A : n = 10 0.063± 0.002 N.A. N.A. N.A.

L : n = 3 0.179± 0.038 0.184± 0.048 0.128± 0.044 0.167± 0.036
L : n = 10 0.174± 0.024 0.176± 0.025 0.144± 0.016 0.153± 0.019
R : n = 3 0.043± 0.007 0.131± 0.109 0.045± 0.027 0.125± 0.058
R : n = 10 0.043± 0.013 0.052± 0.012 0.064± 0.016 0.081± 0.015
G : n = 3 0.079± 0.079 0.112± 0.033 0.097± 0.080 0.152± 0.095
G : n = 10 0.001± 0.002 0.006± 0.002 1.051± 6.983 1.120± 5.418
S : n = 5 0.004± 0.005 0.019± 0.009 0.080± 0.056 0.072± 0.020
S : n = 10 0.004± 0.010 0.003± 0.005 0.012± 0.024 0.005± 0.004
V : n = 3 0.004± 0.004 0.104± 0.010 0.010± 0.027 1.023± 2.018
V : n = 10 0.004± 0.009 0.037± 0.024 0.055± 0.002 0.061± 0.003

RSR : n = 3 0.079± 0.068 0.153± 0.098 0.031± 0.019 0.113± 0.042
RSR : n = 10 0.077± 0.029 0.087± 0.032 0.051± 0.011 0.069± 0.010
GSR : n = 3 0.147± 0.088 0.150± 0.076 0.274± 0.284 0.129± 0.076
GSR : n = 10 0.101± 0.046 0.107± 0.045 0.204± 0.297 0.196± 0.276

Table 4.6: Niching acceleration values for the (1 + λ)-Strategy: Mean values
and standard deviations of the absolute value of c over 100 runs.

Test-Case CMA M-CMA S-CMA MS-CMA

M : n = 3 0.055± 0.007 0.056± 0.007 0.046± 0.004 0.049± 0.005
M : n = 10 0.015± 0.001 0.016± 0.001 0.015± 0.001 0.015± 0.001
M : n = 40 0.006± 0.001 0.006± 0.001 0.004± 0.001 0.004± 0.001
A : n = 3 0.044± 0.004 0.048± 0.004 0.016± 0.015 0.043± 0.016
A : n = 10 0.017± 0.001 0.016± 0.001 N.A. N.A.

L : n = 3 0.066± 0.015 0.066± 0.020 0.053± 0.012 0.058± 0.012
L : n = 10 0.029± 0.011 0.034± 0.007 0.040± 0.002 0.040± 0.002
R : n = 3 0.054± 0.005 0.053± 0.005 0.041± 0.007 0.043± 0.014
R : n = 10 0.015± 0.002 0.007± 0.001 0.019± 0.001 0.020± 0.001
G : n = 3 0.065± 0.009 0.064± 0.013 0.061± 0.014 0.050± 0.017
G : n = 10 0.808± 5.670 1.080± 10.380 0.748± 6.995 2.023± 18.077
S : n = 5 0.006± 0.008 0.006± 0.004 0.030± 0.012 0.021± 0.004
S : n = 10 0.002± 0.001 0.002± 0.001 0.009± 0.010 0.005± 0.003
V : n = 3 0.063± 0.008 0.065± 0.010 0.015± 0.005 0.040± 0.010
V : n = 10 0.027± 0.002 0.020± 0.003 0.025± 0.001 0.025± 0.001

RSR : n = 3 0.055± 0.006 0.056± 0.009 0.037± 0.010 0.045± 0.012
RSR : n = 10 0.021± 0.002 0.021± 0.002 0.018± 0.001 0.018± 0.001
GSR : n = 3 0.176± 0.150 0.156± 0.050 0.152± 0.069 0.181± 0.206
GSR : n = 10 0.031± 0.011 0.031± 0.016 0.032± 0.013 0.034± 0.011

niching acceleration for the Mahalanobis-distance based routines. This result
is pretty much intuitive - a more accurate spatial classi�cation, as typically
obtained by the Mahalanobis metric, allows the niching mechanism in most
cases to form appropriate niches and to converge faster.
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Figure 4.5: Final population of the CMA-(1, 10) with a self-adaptive niche
radius on the 1D Shekel function.

Figure 4.6: Final population of the CMA-(1, 10) with a self-adaptive niche
radius on the 1D Vincent function.
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4.3.2 General Behavior

The proposed self-adaptive niche radius routine performed well on the land-
scapes with the �deceptive� distribution of optima, i.e., V and S, and man-
aged to tackle the niche-radius problem successfully. Visualizations of the
runs on V and S for n = 1 are given as Figures 4.5 and 4.6. Figures A.1,
A.2, and A.3 illustrate the adaptation of the classi�cation-ellipses by the
M-CMA+ routine on the 2D Fletcher-Powell, 3D Fletcher-Powell, and 3D
Ackley landscapes, respectively. It can be observed in the Fletcher-Powell
case that each niche has its own characteristic matrix and convergence pro-
�le, whereas the convergence in the Ackley seems to be simultaneous, as
expected from the landscape symmetry.

4.4 Discussion

We have introduced new concepts of adaptive niche-radii and niche-shapes
into the framework of niching with the Covariance Matrix Adaptation Evolu-
tion Strategy. The main goal was to treat the so-called niche radius problem,
and to o�er an e�cient niching mechanism with no pre-assumptions on the
landscape. It was successfully achieved at two levels: The construction of
self-adaptive niche-radius, and the employment of the Mahalanobis distance
for the adaptation of the niche-shapes. We have described both approaches
in detail.

In further detail, given the CMA-ES-
(
1 +, λ

)
routines, 4 variants of nich-

ing were considered per routine, and tested on a suite of arti�cial landscapes.
The new approaches were shown to perform in a satisfying manner, on land-
scapes with evenly and unevenly spread optima. The niche radius problem
was tackled successfully by the self-adaptive approach, as demonstrated on
landscapes with unevenly spread optima, both separable and non-separable.
The application of the Mahalanobis distance achieved its goal in improving
the niching process, in terms of obtaining on average higher quality sub-
optima, subject to higher niching acceleration. It does neither seem to im-
prove nor to hamper, on average, the identi�cation of the location of global
minimum, as expected.

The careful reader should note that employing the Mahalanobis distance
is applicable only when the niching distance is calculated in the decision
space. Sometimes this is not the case, and other spaces are used for that
(e.g., the second-derivative space, for more details see Chapter 8).

We would like to discuss here the important issue of parameters in light
of our proposed approaches. The discussion is done at two levels. The
�rst is the relaxation of existing parameters in the �xed-radius CMA niching
algorithm, and more speci�cally the parameter q. The parameter q is reduced
in this study, for the �rst time, from being a critical niching parameter in
the �xed-radius approach into being the estimated/desired target number of
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niches/peaks in the self-adaptive approaches without any in�uence on the
algorithmic behavior. In essence, a possibly wrong estimation of q would
simply be responsible for wasting CPU cycles when too large, or missing
good optima when too small. The second level is the introduction of new
parameters, i.e., α and γ (Eq. 4.3), for the function of the learning coe�cients

(Eq. 4.2). Although this is an undesired situation, one should keep in mind
that by setting only two parameters, we are allowing the application of a
niching method to landscapes with a large number of optima with possibly
di�erent basin sizes, that would require di�erent niche radii, respectively.
We would like to stress that if these parameters had not been introduced,
the application to such landscapes would not have been feasible
with the �xed-radius approach, or would have required setting as
many parameters as the number of peaks. Thus, by setting only these
two parameters, we achieve a lot. Moreover, the proposed settings apply for
a wide range of practically relevant landscapes, and do not have to be chosen
for each new problem by means of additional experiments.

Regarding the implementation of the Mahalanobis metric, we have of-
fered here a numerical simpli�cation of the required calculation, which was
observed to pay o� in terms of computation time. By applying this numerical
implementation, the Mahalanobis approach share the same computational
complexity as the previously discussed approaches.

We thus present here both the self-adaptive niche-radius CMA-niching as
well as the CMA-niching with Mahalanobis distance as state-of-the-art nich-
ing techniques within Evolution Strategies, and propose them as solutions
to the so-called niche-radius problem.



People talk about the middle of the road as though it were

unacceptable. Actually, all human problems, excepting morals,

come into the gray areas. Things are not all black and white.

There have to be compromises. The middle of the road is all of

the usable surface.

Dwight D. Eisenhower

Chapter 5

Niching-CMA for
Multi-Objective Optimization

This chapter introduces an additional extension to our proposed niching
framework of Chapter 3, aiming at constructing a simple algorithm for multi-
objective optimization.

5.1 Multi-Objective Optimization

Decision making in real-life is often subject to multiple objectives to be
met. In many scenarios, satisfying one objective is typically in con�ict with
satisfying the other. The �eld of Multi-Criterion Decision Making (MCDM)
aims at developing mechanisms for supporting the decision making process
when treating multiple objectives. The idea is to study the nature of the
trade-o� between the various objectives, to seek a good compromise, and to
avoid a lose-lose scenario.

Naturally, we are interested in the optimization perspective of MCDM,
and especially in evolutionary multi-objective optimization algorithms (EMOA).
The latter has developed in the last two decades, and has become a �eld of
intense research.

Next, we brie�y review here formally the basic concepts of Multi-Objective
Optimization.

5.1.1 Formulation

Given an optimization problem withm objectives, we consider itsm-dimensional
objective space, also referred to as the solution space. By de�nition, the vec-
tor of objectives is in Rm:

f⃗ (x⃗) = (f1 (x⃗) , f2 (x⃗) , . . . , fm (x⃗))T (5.1)

87
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We assume that all objectives are to be minimized. A partial order is de�ned
on the solution space, F = f⃗(X ), by means of the Pareto domination concept
for vectors in Rm, in the following manner:

De�nition 5.1.1. Given any f⃗ (1) ∈ Rm and f⃗ (2) ∈ Rm, we state that f⃗ (1)

strictly Pareto dominates f⃗ (2), noted as

f⃗ (1) ≺ f⃗ (2),

if and only if the following holds:

∀i ∈ {1, . . .m} : f (1)i ≤ f (2)i ∧ ∃i ∈ {1, . . . ,m} : f (1)i < f
(2)
i (5.2)

Note, that in the bi-criteria case this de�nition is reduced to:

f⃗ (1) ≺ f⃗ (2) :⇔ f
(1)
1 < f

(2)
1 ∧ f (1)2 ≤ f (2)2 ∨ f (1)1 ≤ f (2)1 ∧ f (1)2 < f

(2)
2 (5.3)

In addition to the strict domination ≺, we de�ne further comparison opera-
tors:

f⃗ (1) ≼ f⃗ (2) ⇐⇒ f⃗ (1) ≺ f⃗ (2) ∨ f⃗ (1) = f⃗ (2) (5.4)

Moreover, we state that f⃗ (1) is incomparable to f⃗ (2), noted as

f⃗ (1)||f⃗ (2),

if and only if
f⃗ (1) � f⃗ (2) ∧ f⃗ (2) � f⃗ (1) (5.5)

The crucial claim is that for any compact subset of Rm, say F , there
exists a non-empty set of minimal elements with respect to the
partial order ≼ (see, e.g., [97], pp. 29).

We can now de�ne non-dominated points as follows:

De�nition 5.1.2. Non-dominated points are the set of minimal elements
with respect to the partial order ≼:

FN = {f⃗ ∈ F|@f⃗ ′ ∈ F : f⃗ ′ ≺ f⃗} (5.6)

where a subscript N will denote from now on a non-dominated set in the
context of multi-objective optimization.

Having de�ned the non-dominated set and the concept of Pareto domi-
nation for general sets of vectors in Rm, we are now in a position to relate
it to the optimization mission. The aim of Pareto optimization is to obtain
the non-dominated set for F = f⃗(X ) and its pre-image in X , the so-called
Pareto optimal set, also referred to as the e�cient set. We may then de-
�ne the Pareto front as the set of all points in the objective space that
correspond to the solutions in the Pareto-optimal set.
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In many practical applications we are also satis�ed with a set of solutions
whose image under f⃗ yields a good approximation to the non-dominated set,
though a de�nition of what is a good approximation is problem dependent.
Often, it is desired to achieve a uniform distribution on the Pareto front
and a good convergence of all points in the approximation set to some non-
dominated solution.

For notational convenience, we shall de�ne a strict pre-order on the de-
cision space as follows:

x⃗(1) ≺ x⃗(2) ⇐⇒ f(x⃗(1)) ≺ f(x⃗(2)) (5.7)

Accordingly, we de�ne the pre-order

x⃗(1) ≼ x⃗(2) ⇐⇒ f(x⃗(1)) ≼ f(x⃗2) (5.8)

Note, that this is not a partial order, as the antisymmetry axiom does not
have to be satis�ed. This stems from the fact, that two distinct vectors may
have the same function value. For the same reasons, it is also possible that
the e�cient set comprises more members than the Pareto front.

5.1.2 The NSGA-II Algorithm

Due to their robustness and �exibility, Evolutionary Multi-Objective Op-
timization Algorithms (EMOA) have recently received increased attention
as problem solvers for di�cult simulator-based optimization problems [98,
99, 100]. Among these methods, the NSGA-II method is one of the most
popular, and it has been successfully applied to many real-world problems.

The NSGA-II algorithm has been proposed by Deb [99]. It aims at
obtaining a well distributed approximation set of points that are close to the
Pareto front. It is a (µ + λ)-EA (see Algorithm 1), which employs speci�c
variation operators (for details we refer the reader to [99]), as well as a unique
selection operator. We choose to describe the latter in detail.

The NSGA-II selection consists of two phases, that correspond to pri-
mary versus secondary selection criteria. At �rst, a procedure called non-

dominated sorting is applied, that obtains perfect order on the set of decision
vectors. Next, the solutions which share the same rank are sorted by means
of the crowding distance criterion. Explicitly, non-dominated sorting works
as follows: Given a population R, its non-dominated subset R1 = RN is
extracted. This set forms the best ranked solutions (rank=1). Given the
set R − RN , the non-dominated subset R2 = (R − RN )N is then extracted,
and so on. This is repeated until the set of solutions is empty. The sets
R1, . . . , Ri, . . . , Rℓ are called the non-dominated sets of rank i, i = 1, . . . , ℓ.
Since these sets can possibly contain more than one member, a second cri-
terion is applied in order to sort solutions that share the same rank. This
secondary criterion puts emphasis on the diversity of the solutions, and is



90 Chapter 5. Niching-CMA as EMOA

Figure 5.1: Non-dominated sorting. Figure courtesy of Michael Emmerich
[101].

called the crowding distance: Given a solution x⃗(i) ∈ Rn, we determine the
corresponding f⃗ = f(x⃗) in the solution space, and then evaluate

d(f⃗) =
n∑

k=1

[
min{f (j)

k |j∈{1,...,|R|}−{i}∧f (k)≤f (i)} f
(i)
k − f

(j)
k +

min{f (j)
k |j∈{1,...,|R|}−{i}∧f (k)≥f (i)} f

(j)
k − f

(i)
k

] (5.9)

For a visualization of the non-dominated sorting procedure and the crowding
distance calculation on a bi-criteria optimization problem we refer to Figures
5.1 and 5.2, respectively.

A comprehensive overview on the NSGA-II and other EMO algorithms
can be found in [99]. Recently, an interesting method called the SMS-EMOA
[100] was proposed, and was shown to outperform the NSGA-II algorithm
on standard benchmarks. However, the NSGA-II can be considered still as
the most widely applied EMOA technique in literature, and thus we shall
employ it in this study (see Chapter 9).
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Figure 5.2: Crowding distance. Figure courtesy of Michael Emmerich [101].

5.2 On Diversity in Multi-Objective Optimization

Recently it has been pointed out that not only high diversity of solutions
in the objective space but also high diversity of solutions in the e�cient set
can be of interest for the decision maker [68, 102]. For instance, if a speci�c
point on the Pareto front is selected by the decision maker, it might also be
interesting to consider di�erent possible realizations to this solution in the
decision space. Hence, if there are two di�erent pre-images of the selected
point on the Pareto front in the e�cient set, both of them are of potential
interest for the decision maker. This situation is illustrated in Figure 5.3.
More precisely, the di�erence between the classical selection principle to

our proposed approach can be formalized as follows. Let A denote an ap-
proximation set on which we would like to apply ranking, and let x⃗A and
x⃗B be two solutions in A. In the classical selection method, as employed
by the NSGA-II or SMS-EMOA algorithms, a solution x⃗A is preferred to a
solution x⃗B if x⃗A has a better dominance rank than x⃗B in A, with respect
to non-dominated sorting. Given that x⃗A and x⃗B share the same dominance
rank in A, then x⃗A is preferred to x⃗B, if and only if x⃗A contributes more
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Decision Space Objective Space

Figure 5.3: Diversity for decision making : Illustrative example for a scenario
where two adjacent points on the Pareto front are mapped onto two points
in two completely di�erent regions in the decision space. Units and scales
are arbitrary.

to the diversity of the approximation set in the objective space than x⃗B. In
the proposed selection principle, x⃗A remains preferable to x⃗B, if x⃗A has a
better dominance rank than x⃗B in A. However, given that x⃗A and x⃗B share
the same dominance rank in A, then x⃗A is preferred to x⃗B, if and only if
it contributes more to the diversity in the aggregated space (i.e., in both
objective and decision spaces). This principle can be instantiated in di�erent
ways, depending on the diversity measure de�ned on the aggregated space.

Multi-objective optimization methods aim at maintaining diversity, by
their de�nition, and indeed, one of the popular mechanisms for diversity
maintenance is the crowding concept [67], which is also applied, yet di�er-
ently, as a single-objective niching technique. Thus, the important compo-
nent of diversity is the linking element between the �elds of multi-objective
and multi-modal optimization. However, in multi-objective optimization the
diversity maintenance is typically sought in the objective space, for the sake
of obtaining a fair coverage of the Pareto front, while not taken into account
for the Pareto optimal set in the decision space.

5.2.1 Related Work

Several di�erent studies treated related topics to the work presented in this
chapter. We review them here shortly.

Niching for MOEA: The NPGA Niching techniques have been already
used in the multi-objective optimization arena, by being adjusted accord-
ingly. Horn, Nafploitis and Goldberg [103] introduced a niching technique for
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multi-objective optimization, known as the Niched-Pareto GA (NPGA). The
algorithm was a variant of the �tness sharing niching method, whereas the
niching distance metric was set to consider the objective space only. The se-
lection was based on the so-called Pareto domination tournaments or on the
minimal niche count, otherwise. The NPGA was a classical example of using
an existing single-objective niching technique, in a straightforward manner,
for multi-objective optimization - only by rede�ning the niching distance
measure and the selection mechanism. However, its kernel was the simple
GA, which typically su�ers from limited performance in high-dimensional
continuous landscapes, and it lacked any self-adaptation mechanism.

The Omni-Optimizer Deb's so-called Omni-Optimizer [68] is considered
to be one of the �rst and only attempts of introducing a generic optimiza-
tion routine which aims at covering the four categories of function opti-
mization: Single-objective uni-global, single-objective multi-global, multi-
objective uni-global, and multi-objective multi-global problems. Also, it is
one of the �rst attempts to take diversity in the decision space into consid-
eration.

In principle, this algorithm extends the NSGA-II by considering addi-
tionally the diversity in the decision space. This is implemented by means of
the crowding distance calculation in the decision space for all the individuals.
The assigned crowding distance is de�ned as follows:

if crowd_dist_obj(i) > avg_crowd_dist_obj or
crowd_dist_dec(i) > avg_crowd_dist_dec

then crowd_dist(i) = max (crowd_dist_obj(i), crowd_dist_dec(i))
else crowd_dist(i) = min (crowd_dist_obj(i), crowd_dist_dec(i))

i.e., if the individual has above-the-average crowding distance, either in the
decision or objective space, the larger of them is assigned to it, otherwise
the smaller of the two distances is assigned. This criterion is rather general,
and strongly relies on uniform distribution of peaks as well as on their equal
�tness values. Also, the scalability of the two di�erent spaces is not treated.
We would like to speculate that it is expected to experience di�culties on
non-uniform multi-modal landscapes, for instance. From the practical per-
spective, the algorithm was reported in [68] to be tested only on a single test
function, constructed by Deb for this purpose, with uniformly-distributed
equi-�tness minima landscape. We shall revisit this test-function in our ex-
perimental procedure.

Decision-Space Diversity as an Independent Objective To�olo and
Benini [104] also promoted the issue of genetic diversity in multi-objective
algorithms, and proposed their so-called Genetic Diversity Evolutionary Al-
gorithm (GDEA) for multi-objective optimization. The latter considers the



94 Chapter 5. Niching-CMA as EMOA

diversity of trial solutions in the decision space, quanti�ed by means of a
coverage function, as an independent objective, subject to maximization, in
the ongoing multi-objective search. This GA-based approach was shown to
outperform the NSGA on a set of 30D bi-criteria minimization problems
introduced by Zitzler et al. [105].

Self-Adaptation in Multi-Objective Optimization Self-adaptation of
strategy parameters [106] has become a fundamental component in the evo-
lutionary optimization routine. Moreover, the self-adaptation of the muta-
tion strategy parameters has been shown to be necessary for e�cient single-
objective optimization within ES [106].
Self-adaptation is expected to fail in the classical multi-objective optimiza-
tion routine. This is due to the fact that given con�icting objectives, a
successful mutation toward one objective is not necessarily a successful mu-
tation toward the others � and hence should not be selected.
Büche, Müller and Koumoutsakos [107] conducted a pioneering study of
self-adaptation in multi-objective optimization. They considered three dif-
ferent classes of multi-objective algorithms - independent sampling, cooper-
ative population search with dominance criterion and cooperative population

search without dominance criterion. Three representatives - CMEA, SPEA
and SDM - matching the classes respectively, were tested on a multi-objective
generalization of the sphere model, and compared with respect to each other.
Self-adaptation had been plugged-in into the evolutionary core mechanisms
of the algorithms, in a limited way (rotation angles, for instance, were not
always adapted). The conclusion was that self-adaptation did not work for
cooperative population searches which use the dominance criterion in the �t-
ness assignment (SPEA), and this result was reassured by testing more rep-
resentatives from that class of algorithms, such as the NSGA-II and SPEA2.
However, self-adaptation could work for the CMEA and SDM, which do not
use dominance, but rather consider a single objective for optimization while
the other objectives are treated as constraints. The concluding message was
clear � self-adaptation does not work in its classical de�nition upon consid-
ering multiple objectives � as had been speculated.

Recently, the self-adaptation obstacle was treated successfully by using
the so-called hyper-volume indicator (also known as S-metric) [98] as a se-
lection criterion, similar to [100], in the Multi-Objective CMA-ES [33], to be
discussed next. A similar approach, yet employing a simpler ES kernel, was
also reported recently in [108].

CMA-ES for Multi-Objective Optimization An algorithm for multi-
objective optimization with a CMA kernel was introduced recently [33], em-
ploying numerous (1 + 1) parallel search processes that undergo a shared
selection phase. The latter is based on non-dominating ranking as a primary
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criterion, followed by the maximization of the Pareto front hyper-volume as
a secondary criterion. Crowding distance was also considered as an alterna-
tive secondary selection criterion. In many ways, this algorithm resembles
our niching framework. However, its diversity preservation stems from the
outcome of selection with respect to multiple criteria, rather than from the
spatial enforcement of speciation by means of a niche de�nition. It is impor-
tant to note in this context, that the hyper-volume indicator is well-de�ned
as a measure of diversity and solution-set quality in the objective space, but
cannot be applied as an indicator of diversity in the search space.

5.3 Multi-Parent Niching with (µW , λ)-CMA

In order to apply a niching algorithm for multi-objective optimization, we
would like to design a stable niching kernel, where niches are less dynamic
and associated more strongly with their spatial origins. In practice, we aim
at �xing an o�spring to its spatial niche, or alternatively, at verifying that a
selected successor of a niche indeed originates from the same source as the
parent as well as the other members. The veri�cation of this condition may
be easily incorporated into the niching framework presented in Chapter 3.
This condition naturally poses a limitation on the free speciation process.
Thus, we would like to boost the performance of this limited niching variant
by introducing a multi-parent niching approach, as will be discussed shortly.

The
(
1 +, λ

)
niching framework may be extended to a multi-parent nich-

ing framework, by employing a (µW , λ)-CMA kernel. We propose here the
following algorithm. In this extension, the issue to be treated is the iden-
ti�cation of the selected set of o�spring due to be recombined. Following
the (1, λ) framework, the niche representative is well de�ned, i.e., as output
from the DPI routine. However, the number of individuals in that niche
is unknown a-priori, and moreover, some of the individuals in the current
spatial niche might not share the same parent. Thus, we choose to de�ne
the rest of the selected o�spring as the set of at most ⌊λ2 ⌋ − 1 individuals
that are within niche radius from the peak individual and share a parent
with it. This way, it is guaranteed that the ES mutation distribution evolves
continuously, and that the spatial niche is stable.

Since the value of µ is set dynamically every generation, and is likely
to vary over time, other auxiliary coe�cients must be updated accordingly,
such as the recombination weights (see Eq. 1.44). Otherwise, this scheme is
not expected to introduce any instabilities into the niching framework. As
for the value of λ, we propose to set it to its recommended default value, as
in Eq. 1.47:

λ = 4 + ⌊3 · ln (n)⌋

A pseudo-code for the multi-parent-CMA niching routine is presented in
Algorithm 8.
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Algorithm 8 Multi-Parent (µW , λ) Niching-CMA with a Fixed Niche Ra-
dius
1: for i = 1 . . . (q + p) search points do
2: Generate λ samples based on the CMA-set of i
3: end for
4: Evaluate �tness of the population
5: Compute the Dynamic Peak Set with the DPI Algorithm
6: for j = 1 . . . q elements of DPS do
7: Identify at most µ = ⌊λ2 ⌋ �ttest individuals with Parent (peak(j))
8: Apply weighted recombination on these individuals to yield ⟨x⃗⟩jW , ⟨z⃗⟩jW
9: Inherit the CMA-set of Parent (peak(j)) and update it w.r.t. ⟨z⃗⟩jW
10: end for
11: if NDPS=size of DPS < q then
12: Generate q −NDPS new search points, reset CMA-sets
13: end if
14: if gen mod κ ≡ 0 then
15: Resample the (q + 1)th . . . (q + p)th search points
16: end if

Numerical Observation: (1, λ)-Niching vs. (µW , λ)-Niching

We tested the derived multi-parent niching-CMA variant on the suite of ar-
ti�cial multimodal landscapes of Section 3.4. A comparison with its (1, λ)
sibling clearly shows that the multi-parent variant is inferior in performance
on the given landscapes. It seems that the free speciation component in the
original (1, λ) strategy plays an important role in the niching process. There-
fore, we restrict the use of the multi-parent variant to the multi-objective
framework, which will be derived next.

5.4 Niching-CMA as EMOA

The idea of the proposed method is to approximate the Pareto front using
niches, i.e. every niche represents a point in the evolving front. This is
achieved by considering the aggregated decision and objective spaces for the
distance metric of the niching formation. This method employs the multi-
parent niching-CMA routine as it is, with the following modi�cations:

• Ranking of individuals is based upon non-dominated sorting.

• Distance between niches is evaluated in the aggregated space, as will be
explained shortly. Also, the estimation of the niche radius is adjusted.
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5.4.1 The Niching Distance Metric

Given the n-dimensional decision vector of individual i, x⃗(i) =
(
x
(i)
1 , . . . , x

(i)
n

)T
,

with its assigned m-dimensional objective vector, f⃗ (i) =
(
f
(i)
1 , . . . , f

(i)
m

)T
,

and given the equivalent decision and objective vectors of individual j,(
x⃗(j), f⃗ (j)

)
, the distance between individuals i and j is de�ned as the Eu-

clidean distance between the two aggregated vectors subject to dimension-
ality normalization, i.e., norm-2 in the n+m aggregated space. It explicitly
reads,

di,j =

√√√√ 1

n

n∑
k=1

(
x
(i)
k − x

(j)
k

)2
+

1

m

m∑
ℓ=1

(
f
(i)
ℓ − f

(j)
ℓ

)2
(5.10)

5.4.2 Selection: Non-dominating Ranking

In order to select individuals based on more than a single objective, the ex-
isting selection mechanism had to be modi�ed. As outlined previously, the
niches are identi�ed based on their ranked quality. In our new multi-objective
context, rather than sorting the �tness values, we propose to perform domi-

nance ranking, after which the routine will proceed as usual: Starting with
rank 1, a greedy identi�cation of the niches will be executed, considering the
distance with respect to the aggregated objective and decision spaces. If not
all q niches are populated, the routine will proceed to rank 2, and so on.

5.4.3 Estimation of the Niche Radius

Since our method aims to approximate the Pareto front by populating it
with a uniform distribution of q niches, we can estimate the niche radius
ρ for speci�c cases. The following derivations are strictly limited to 2D
decision or objective spaces, but we believe that they could be generalized
to n-dimensional spaces.

Consider a connected Pareto front, and assume that we can de�ne its
length, denoted by lFRONT . Also, let the diameter of the Pareto set be
denoted by lSET . Upon considering the aggregated space, and demanding a
uniform distribution of niches, one may write:

2 · ρ · q =
√
l2FRONT + l2SET (5.11)

Simpli�ed Model One can consider a simpli�ed model for providing an
upper and a lower bounds for ρ, by taking into account only the objective
space. For this purpose let us consider the Nadir objective vector, denoted
here as ζ⃗(N ) = (f1,N , f2,N )T . In the general m-dimensional objective space,
the Nadir objective vector is de�ned as the vector with the worst objective
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values of all Pareto optimal solutions (as opposed to the worst objective
values of the entire space):

ζ
(N )
i = max

{
fi

∣∣∣(f1, . . . , fi, . . . , fm)T ∈ FN

}
. (5.12)

The Nadir objective vector can be computed for m = 2 by employing single-
objective optimization. For m > 2, heuristics are available, but the problem
is considered to be computationally hard [97].

Without loss of generality, assume that the objectives {f1, f2} are as-
signed with values in the intervals {[f1,min, f1,N ] , [f2,min, f2,N ]}, respec-
tively. The length of the assumably-connected Pareto front has a lower
bound of

lFRONT,min =

√(
(f1,N − f1,min)

2 + (f2,N − f2,min)
2
)
, (5.13)

and an upper bound of

lFRONT,max = |f1,N − f1,min|+ |f2,N − f2,min| . (5.14)

Hence, upon assuming a uniformly spaced population of the q niches along
the front, one can derive√(

(f1,N − f1,min)
2 + (f2,N − f2,min)

2
)

2 · q
≤ ρ ≤

|f1,N − f1,min|+ |f2,N − f2,min|
2 · q

(5.15)

The General Case For the general case, we choose to de�ne the default
values as the radii of the decision or the objective spaces, respectively:

rSET =

√√√√ n∑
i=1

(xi,max − xi,min)
2 (5.16)

rFRONT =

√√√√ m∑
j=1

(fj,max − fj,min)
2 (5.17)

And thus

ρ =

√∑n
i=1 (xi,max − xi,min)

2 +
∑m

j=1 (fj,max − fj,min)
2

2 · q
(5.18)

The niche radius is essentially a crucial parameter of this method, and its
estimation or tuning is critical for the algorithmic success.
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5.5 Numerical Simulations

We outline here our experimental setup for the proposed method.

5.5.1 Test Functions: Arti�cial Landscapes

We consider a set of arti�cial bi-criteria landscapes in order to test the algo-
rithmic performance. Following our mission statement, and due to the fact
that we have no desire in introducing another standard EMOA, we tend to
focus in landscapes with more interesting decision space characteristics, and
provide the reader with a proof of concept for the proposed approach. Next,
we describe the four di�erent landscapes to be considered:

1. Deb's Omni-Test As mentioned earlier, Deb constructed a bi-criteria
multi-global landscape for testing his Omni-Optimizer [68]. Explicitly,
it reads:

f1(x⃗) =

n∑
i=1

sin (πxi) −→ min

f2(x⃗) =
n∑

i=1

cos (πxi) −→ min

(5.19)

where ∀i xi ∈ [0, 6].

2. EBN The EBN family of functions [100] introduced a very basic set
of test-problems for multi-objective algorithms. Explicitly, it reads:

f
(γ)
1 (x⃗) =

(
n∑

i=1

|xi|

)γ

· n−γ −→ min

f
(γ)
2 (x⃗) =

(
n∑

i=1

|xi − 1|

)γ

· n−γ −→ min

(5.20)

The shape of the Pareto front can be controlled by means of the pa-
rameter γ, and it is de�ned by the following equation:

y2 =
(
1− y1/γ1

)γ
, y1 ∈ [0, 1] (5.21)

Thus, the shape of the front will be a concave, linear, or convex arc for
the cases of γ < 1, γ = 1, or γ > 1, respectively.

The main purpose of studies employing this set of problems is charac-
terizing the EMOA distribution points on a Pareto front of di�erent
elementary shapes. The EBN problems are attractive in the context of
e�cient set approximation, as the pre-images of points in the objective
space are not single points, but rather line segments on the diagonals
of [0, 1]n, excepting the extremal points (0, 1)T and (1, 0)T (see, e.g.,
[101]). In our study we shall consider the case of γ = 1.
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3. "Two-on-One" This test-case was originally introduced in an inter-
esting study of the Pareto-optimal set [109], which has been to some
extent one of the origins to the study presented in this chapter. It
is a two-dimensional function, with a 4th-degree polynomial with two
minima as f1 versus the sphere function as f2:

f1(x1, x2) = x41 + x42 − x21 + x22 − cx1x2 + dx1 + 20 −→ min

f2(x1, x2) = (x1 − k)2 + (x2 − l)2 −→ min
(5.22)

We consider the asymmetric case, with c = 10, d = 0.25, k = 0, and
l = 0 (case number 3 as reported in [109]).

4. Lamé Superspheres We consider a multi-global instantiation of a
family of test problems introduced by Emmerich and Deutz [110], the
Pareto fronts of which have a spherical or super-spherical geometry.
In contrast to the EBN problem, the set of pre-images of a point on
the Pareto front for this instance is �nite, and solutions are placed on
equidistant parallel line-segments, each of them being a pre-image of a
local Pareto front.

Let d = 1
n−1

∑n
i=2 xi, and r = sin2(π · d),

f1 = (1 + r) · cos(x1) −→ min

f2 = (1 + r) · sin(x1) −→ min
(5.23)

with x1 ∈
[
0, π2

]
, and xi ∈ [1, 5] for i = 2, . . . , n.

5.5.2 Modus Operandi

We carried out numerical simulations on the bi-criteria landscapes introduced
in the previous section in order to test the algorithmic performance of the
proposed method. We chose to apply three additional algorithms as reference
methods: the NSGA-II, the Omni-Optimizer, and a variant of the NSGA-
II which considers an aggregated space in the crowding calculations. The
latter routine is meant to assess the importance of the aggregation concept
for attaining decision space diversity. The idea was to approximate the
Pareto front by means of q = 50 points, and allocate a �xed number of
NumEvalmax = 50, 000 function evaluations per run. We are aware that
these are not the optimal settings for the reference methods; The Omni-
Optimizer, for instance, was reported in [68] to employ a population of 1, 000
individuals. However, our goal here is also to exploit the advent of modern
derandomized Evolution Strategies, which o�er optimization with minimal
settings.

In order to assess the boost of diversity in the decision space, we would
like to introduce here a quanti�er for that. Let dA,B denote the Euclidean
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Table 5.1: Hypervolume values of the Pareto fronts of the 4 di�erent algo-
rithms on the 4 test-cases: Average and standard-deviation over 20 runs.

Hypervolume Niching-CMA NSGA-II NSGA-II-Agg Omni-Opt.

Omni-Test 30.27± 0.05 30.17± 0.034 29.80± 0.23 29.75± 0.18

EBN 3.283± 0.042 3.289± 0.088 2.87± 0.182 2.064± 0.057

Two-on-One 173.4± 0.26 173.7± 1.56 172.7± 1.78 150.2± 28.6

Superspheres 3.176± 0.038 3.203± 0.001 3.117± 0.080 2.457± 0.372

distance between individual x⃗A and individual x⃗B:

dA,B = ∥x⃗A − x⃗B∥ (5.24)

We then de�ne the population diversity of the Pareto optimal set as the
mean value of the µN (µN−1)

2 distance measures between all the individuals,
normalized by the diameter of the decision space, denoted by diam:

D =
2

diam · µN (µN − 1)
·
∑
A ̸=B

dA,B (5.25)

This scalar should give us an indication to what degree the �nal population
is diverse.

5.5.3 Numerical Observation

We present the numerical results by means of plots of typical runs of the re-
sulting approximated Pareto-set and Pareto-front (i.e., all the non-dominated
individuals in the last generation). The plots present the outcome of the dif-
ferent algorithms both in the decision and the objective spaces, per land-
scape. Note that the decision space is represented by plotting x1 ver-
sus x2, except for the Superspheres test-case where x1 is plotted versus

1
(n−1) ·

∑n
i=2 xi. These plots are given in Figures 5.4, 5.5, 5.6, and 5.7.

Table 5.1 presents the calculations of the S-metric, as a performance
criterion in the objective space, averaged over 20 runs. Moreover, Table 5.2
presents the calculations of the decision space diversity, as de�ned in Eq.
5.25, averaged over 20 runs.

Generally speaking, the proposed algorithm performed in a highly satis-
fying manner, obtaining good Pareto-sets with high diversity in the decision
space, which are mapped onto well-approximated Pareto-fronts. In terms of
the performance criterion in the objective space, the S-metric (hypervolume),
Niching-CMA and the NSGA-II performed equally well, while the NSGA-II
with aggregation and the Omni-Optimizer typically performed slightly worse.
Regarding the diversity in the decision space, the proposed algorithm accom-
plished its goal: it attained higher decision space diversity in comparison to
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Table 5.2: Decision-space diversity, as de�ned in Eq. 5.25, of the 4 di�erent
algorithms on the 4 test-cases: Average and standard-deviation over 20 runs.

Diversity Niching-CMA NSGA-II NSGA-II-Agg Omni-Opt.

Omni-Test 0.256± 0.060 0.205± 0.079 0.222± 0.070 0.030± 0.002

EBN 0.483± 0.008 0.410± 0.023 0.356± 0.028 0.011± 0.010

Two-on-One 0.295± 0.01 0.136± 0.036 0.116± 0.031 0.106± 0.054

Superspheres 0.413± 0.024 0.239± 0.049 0.307± 0.046 0.062± 0.056

the other method on all landscapes. This result can also be clearly observed
in the decision space plots. On the Omni-Test landscape, Niching-CMA per-
formed very well, while typically obtaining 4 Pareto subsets, in comparison
to one or two subsets for each of the other routines. On the EBN landscape,
Niching-CMA attained a quasi-uniform distribution in the decision space.
On the "Two-on-One" landscape, the proposed algorithm managed to ex-
plore both branches of the so-called propeller-shaped Pareto-set [109], while
the other algorithms typically explored either one of the two branches. On
the Super-Spheres landscape, Niching-CMA performed extremely well, while
obtaining a good distribution of typically 3 Pareto subsets. The other meth-
ods, nevertheless, usually obtained a single Pareto subset. This is clearly
observed in Figure 5.7, where the �nal population of the these algorithms
is mostly concentrated along a single line-segment, corresponding to a sin-
gle Pareto subset. Hence, in multi-globality terms, Niching-CMA clearly
outperformed the other methods on these landscapes.

It should be noted that introducing the aggregation component into the
NSGA-II did improve the attained decision space diversity to some extent on
two landscapes, but did not have a considerable contribution. We conclude
that considering the aggregated space by itself does not seem to be su�cient
for attaining high diversity in the decision space. We rather consider it as a
bridge for niching to multi-objective domains. We would like also to point
out the poor performance of the Omni-Optimizer in terms of the attained
decision space diversity. It is likely that its performance was hampered due
to the small population size employed here.

Discussion

The constructed algorithm required rather mild adjustments to the new
arena of multi-global multi-objective optimization. Due to the fact that
it is niche-radius based, we proposed a way to approximate this parameter.
The algorithm was applied to a testbed of conventional arti�cial bi-criteria
landscapes, of various dimensions, and compared to the classical GA-based
EMOAs: The NSGA-II, the Omni-Optimizer and an aggregated-space vari-
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Figure 5.4: 5D Omni-Test landscape (Eq. 5.19): Final populations of the
four routines (see legend). Left: Decision space; Right: Objective space.

Figure 5.5: 10D EBN landscape (Eq. 5.20): Final populations of the four
routines (see legend). Left: Decision space; Right: Objective space.

ant of the NSGA-II. The observed numerical results were highly satisfying,
where in all cases not only the Pareto front, but also the e�cient set, were
better covered in comparison to the existing approaches. This outcome pro-
vided us with the desired proof of concept for the proposed method. It should
be noted that the GA-based methods performed poorly, likely due to the
small population sizes that are typically employed by ES-based algorithmic
kernels.
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Figure 5.6: 2D Two-on-One landscape (Eq. 5.22): Final populations of the
four routines (see legend). Left: Decision space; Right: Objective space.

Figure 5.7: 4D Super-Spheres landscape (Eq. 5.23): Final populations of the
four routines (see legend). Left: Decision space; Right: Objective space.
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The dream is alive!

Herschel Rabitz

Chapter 6

Introduction to Quantum
Control

Controlling the motion of atoms and molecules has been a dream since the
early days of Quantum Mechanics. Although this quest initially met with
failure, the foundation of the Quantum Control (QC) �eld in the 1980s,
throughout the development of various approaches [111, 112, 113], has �nally
brought this dream to fruition. Quantum Control, sometimes referred to as
Optimal Control or Coherent Control, aims at altering the course of quantum
dynamics phenomena for speci�c target realizations. There are two main
threads within Quantum Control, theoretical versus experimental control,
as typically encountered in Physics. They have experienced an amazing
increase of interest during the past 10 years, in parallel to the technological
developments of ultrafast laser pulse shaping capabilities, that obviously
made it possible to turn the dream into reality. For a broad �eld review see
[114, 115, 116].

The list of successfully closed-loop quantum controlled systems in Physics
and Chemistry is practically endless. Examples of early work contain success-
ful applications in �uorescence spectrum manipulation [117], control of quan-
tum wavefunctions [118], vibrational excitation tailoring in polymers [119],
molecular rearrangement selectivity [120], chemical discrimination [121], ul-
trafast solid-state optical switching [122], and photosynthetic bacteria energy

transfer [123].

In this chapter we review the fundamental principles of Quantum Control,
both in theory and in experiments. Should the reader choose to explore
this chapter, an understanding of the basic quantum mechanics principles is
assumed, as well as being familiar with the Dirac notation. The reader who
wishes to abstract from the physics details could simply view the Quantum
Control applications in this study as a non-linear high-dimensional set of
problems with real-world applications.

107
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6.1 Optimal Control Theory

Optimal Control Theory (OCT) [124, 125] aims at manipulating the quantum
dynamics of a simulated system by means of an external control �eld, ϵ (t),
which typically corresponds to a temporal electromagnetic �eld arising from
a laser source. The objective to be met in this control process is de�ned by
means of a given physical observable, whose yield is subject to maximization.
A quantum control landscape is thus de�ned as the functional dependence
of an observable yield on the control variables, and may be visualized as a
surface over the space of all possible controls.

This section is mainly based on [126] (de�nitions) and on [127, 128] (QC
derivations).

6.1.1 The Quantum Control Framework

Formally, we consider quantum systems which are described by Hamiltonians
of the form

H (t) = H0 − µ⃗ · ϵ⃗ (t) (6.1)

with H0 as the free-�eld Hamiltonian, µ⃗ the dipole moment operator, and
ϵ⃗ (t) the electric �eld, within the so-called electric dipole approximation. The
electric �eld is often reduced to a scalar, due to the common assumption of a
linear polarization. In practice, a �nite number N of states is considered, and
thus the Hilbert in�nite-dimensional space is practically reduced to
an N-dimensional space, and therefore the Hamiltonian is typically
an N ×N Hermitian matrix.

Given some initial quantum state |ψ (t = 0)⟩ = |ψ0⟩, the time evolution
of the quantum state |ψ (t)⟩ is dictated by the time-dependent Schrödinger
equation:

i~
∂

∂t
|ψ (t)⟩ = H(t) |ψ (t)⟩ (6.2)

Equivalently, the time propagation operator, typically referred to as the prop-
agator, acts on quantum states in the following manner:

|ψ (t)⟩ = U
(
t, t′
) ∣∣ψ (t′)⟩⇔ ∣∣ψ (t′)⟩ |ψ (t)⟩ (6.3)

and has the form:

U
(
t, t′
)
= T exp

(
− i
~

∫ t

t′
H
(
t′
)
dt′
)

= exp (iA(t)) (6.4)

where T is Dyson's time-ordering operator, and A = A† is an N ×N Hermi-
tian matrix. Figure 6.1 provides an illustration for the concept of multiple
quantum pathways from an initial state to a �nal state.
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Control Laser Field

Figure 6.1: [Left] Given a quantum system with an initial state |ψi⟩, the
Quantum Control process aims at steering the system into a desired target
state, |ψf ⟩, by means of the control laser �eld ϵ⃗ (t). Coherent control re-
lies on the existence of multiple quantum pathways between the two states,
as illustrated, which result in interference; The goal is thus obtaining con-
structive interference in the desired �nal state, and destructive interference
elsewhere. [Right] The quantization of the multiple quantum pathways pic-
ture; The transition from the initial state to the target state may be attained
in multiple pathways.

Let the target observable operator be O, then the yield of the control pro-
cess for a pure quantum state is de�ned as the expectation of the observable
operator at time t = T :

J = ⟨O⟩T = ⟨ψT |O|ψT ⟩ =
⟨
ψ0

∣∣∣U†OU
∣∣∣ψ0

⟩
= ⟨ψ0 |OT |ψ0⟩ (6.5)

while referring from now on to U as U(T, 0), unless speci�ed otherwise.
Let OT be diagonalized and spanned by means of its eigenvectors:

OT = U†OU =
∑
j

σj |ϕj⟩ ⟨ϕj |, (6.6)

then the highest eigenvalue σmax corresponds to the maximal attainable
observable value.

When an ensemble of quantum states is under investigation,

|Ψ(t)⟩ =
∑
j

pj(t) |ψj⟩,

it is characterized by the density operator ρ(t) = |Ψ(t)⟩ ⟨Ψ(t)|. The dynamics
of the ensemble is then dictated by the von Neumann equation for the
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density operator ρ(t):

i~
∂ρ(t)

∂t
= [H(t), ρ(t)] (6.7)

where [A,B] = AB−BA.
An observable is measured by Tr (ρO), and the Quantum Control yield

is de�ned respectively by:

J = ⟨OT ⟩ = Tr (ρTO) = Tr
(
Uρ0U†O

)
(6.8)

where

ρT = ρ(T ) = Uρ0U†

Additional auxiliary costs may be imposed on the controls due to constraints,
e.g., minimal �uence, and construct respectively a quantum control cost
functional of the form:

J ′ = J − λ
∫ T

0
g (ϵ(t)) dt (6.9)

However, in this chapter we restrict our treatment to quantum optimal con-
trol problems in the absence of these constraints.

Critical Points: Kinematic Treatment At a critical point the di�eren-
tial of the control landscape with respect to U vanishes. This is the so-called
kinematic treatment of the critical point analysis, and it reads:

δJ
δU

= 0 (6.10)

Since U†U = I, we get

δU†U + U†δU = 0

for any δU . Eq. 6.10 may be rewritten now as

δJ
δU

= Tr
(
δUρ0U†O + Uρ0δU†O

)
= Tr

(
δUρ0U†O − Uρ0U†δUU†O

)
=

= Tr
([
ρ0,U†OU

]
U†δU

)
=
⟨
U
[
U†OU , ρ0

]
, δU

⟩
= 0

(6.11)
leading to the important result that at a critical point

[OT , ρ0] =
[
U†OU , ρ0

]
= 0 (6.12)

Hence, OT and ρ0 commute, and thus are simultaneously diagonalizable,
according to this kinematic treatment.
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Critical Points: Dynamic Treatment The dynamic treatment, which
considers the di�erential of the observable with respect to the control �eld
ϵ(t), is typically based on the chain rule:

δJ [⃗ϵ(t)]

δϵ⃗(t)
=
δJ
δU
· δU
δϵ⃗(t)

(6.13)

The dynamic picture is more complex, and is subject to a more delicate
treatment, accordingly. At a critical point, it could be shown [127] that this
di�erential yields:

δJ
δϵ⃗(t)

= Tr ([OT , ρ0]B(t)) = 0, (6.14)

where B(t) = (i/~)U†(t, 0)∇ϵ⃗H(t)U(t, 0).
The crucial assumption which is made by the dynamic treatment states

that the matrix B(t) forms a set of N2 linearly independent functions for
all time 0 ≤ t ≤ T . This assumption obviously leads to [OT , ρ0] = 0, as in
Eq. 6.12, and to the conclusion that the observable and the density matrix
commute in the dynamic picture as well.

When diagonalizing the density matrix, the same eigenvectors of the
observable (Eq. 6.6) are used:

ρ0 =
∑
j

λj |ϕj⟩ ⟨ϕj |

The control yield now reads:

J = Tr

∑
i

∑
j

σiλj |ϕi⟩ ⟨ϕi| ϕj⟩ ⟨ϕj |

 = Tr

∑
j

λjσπ(j) |ϕj⟩ ⟨ϕj |

 =

=
∑
j

λjσπ(j)

(6.15)
where π(j) denotes a permutation, out of N ! possible permutations of these
eigenvalues, assuming that there is no degeneracy.

Special Case: Pi→f A special state-to-state case is commonly considered,
where the transfer of a pure initial state |i⟩, into a desired �nal state |f⟩, is
subject to maximization. It is expressed accordingly through pure density
projectors: A density matrix ρ0 = |i⟩ ⟨i|, and an observable O = |f⟩ ⟨f |.
This population transfer problem has a simpler theoretical treatment, and
moreover, is also commonly encountered in real-world applications. More
explicitly, let us consider the time evolution operator by its matrix element,

Uif = ⟨i|U |f⟩ (6.16)

being a functional of the control �eld, U = U [ϵ(t)]. Then the quantum
control population transfer problem is posed as maximizing the probability

Pi−→f = |Uif |2 (6.17)
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6.1.2 Controllability

By assessing the controllability of the quantum system we aim at attain-
ing the existence of a control �eld which obtains the maximal target yield,
without studying the nature of the landscape. This is essentially di�erent
from optimality analysis, which aims at locating extrema on the landscape,
without necessarily conducting controllability assessment.

A powerful aspect of Quantum Control theoretical landscapes is the abil-
ity to assess perfect controllability of the system, with hardly any assump-
tions on the quantum system, as presented in the following theorem:

Theorem 6.1.1. Assuming controllability of the system, the only extrema

values for Quantum Control of population transfer corresponds to perfect

control:

Pi−→f = 1

In the following we shall outline the principal steps of the proof for this
claim, following [129, 130]. For simplicity, we choose to consider the special
case of Pi−→f , subject to dynamic treatment. Note that Pi→f = |Uif |2.

Proof Idea A dynamic treatment of a landscape extremum reads:

δPi→f

δϵ(t)
= 0 (6.18)

Using the identity
⟨i|U |f⟩ = ⟨i| exp (iA) |f⟩ ,

where A = A† is an N ×N Hermitian matrix, Eq. 6.18 may be rewritten as

δPi→f

δϵ(t)
=
∑
p,q

∂ |Uif |2

∂Apq

δApq

δϵ(t)
= 0 (6.19)

The same crucial assumption made regarding Eq. 6.14 is made here, reduc-
ing the dynamic picture into the kinematic picture: The uniqueness of the
functional dependence of the matrix elements Apq [ϵ(t)] on ϵ(t) is implied by
the assumed controllability of the system.

Eq. 6.18 can now be satis�ed by

∂ |Uif |2

∂Apq
=

∂

∂Apq
|⟨i| exp (iA) |f⟩|2 = U∗

if

∂Uif

∂Apq
+Uif

∂U∗
if

∂Apq
= 0 ∀p∀q

(6.20)
Further examination of this equation (see Supplemental Online Material of
[129]) leads to the following conclusion:

Uif = exp (iα), α ∈ R (6.21)
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and thus |Uif | = 1, and the claim is satis�ed accordingly:

Pi−→f = 1 (6.22)

The most general case would be the dynamical treatment of the extrema of
J = Tr (ρTO). An equivalent theorem, stating that the extrema of such
landscapes would correspond to perfect control or to no-control, exists and
is proven in [127]. Furthermore, the latter article presents important results
regarding the nature of the landscape, which we choose to review here brie�y:

1. The Slope An upper bound of the gradient reads:∣∣∣∣ δJδϵ(t)
∣∣∣∣ ≤ 2

~
∥O∥ × ∥µ⃗∥ (6.23)

where the linear polarization of the electric �eld was assumed for sim-
plicity. In practical realizations, it is reasonable to expect that the
landscape slope up to the global maximum will have no steep regions,
suggesting that the optima are robust.

2. Hessian at the Global Maximum The Hessian matrix has typically
at most (2N −np−1) non-zero negative eigenvalues (np is the number
of non-zero eigenvalues of ρ0), where the rest correspond to the null
space, which is spanned by their eigenfunctions. Thus, there exist
saddle points, but they do not introduce any obstacle toward locating
the global maximum.

3. Robustness The trace of the Hessian matrix at the top of the land-
scape suggests a robust global maximum in any practical realization,
and gets more robust as the dimensionality N increases.

We conclude this section by stating the following corollary:

Corollary 6.1.2. Quantum Control landscapes have extrema that correspond

to perfect control or to no-control. Furthermore, given a controllable quan-

tum system, there is always a trap-free pathway up to the top of the control

landscape from any location, allowing the location of the global maximum

with �rst-order (gradient) information.

6.1.3 Control Level Sets

Given the results obtained in the previous section, stating that the gradient
of the yield function vanishes only at the top of the landscape, it is possible
to draw an important conclusion regarding the existence of level sets1 in
the landscape.

1This important concept, which was discussed previously in the context of global min-
imum de�nition (see Eq. 1.2 and Theorem 1.1.1) or the basin de�nition (see De�nition
2.3.1), is revisited here in the context of success-rate.
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Let f : Rn → R be under investigation, with a point in the landscape
which satis�es:

f∗ = f(x⃗∗), ∇f(x⃗∗) ̸= 0

The so-called Implicit Function Theorem states that there exists an (n− 1)-
dimensional manifold near x⃗∗ with the same function value of f∗, and its
tangent plane at x⃗∗ is perpendicular to ∇f(x⃗∗).

This theorem can be applied directly to Quantum Control landscapes,
due to the results presented previously. While climbing up the QC landscape,
every associated yield value along the way has a corresponding manifold,
which can potentially be explored by continuous trajectories.

Obviously, we cannot apply the same theorem in order to draw an equiv-
alent conclusion regarding the existence of a level set at the top. However, it
is possible to show that a denumerably in�nite number of solutions exists at
the top of the landscape. Under mild assumptions, it was shown in [131, 132]
that in the absence of constraints an in�nite number of solutions will exist
for a general Quantum Control problem. The proof is based on functional
analysis treatment, subject to perturbation formulation, and is beyond the
scope of this study.

We may conclude that Quantum Control landscapes are not only easy
in terms of the location of its maxima, i.e., optimal controls, as suggested
previously, but also o�er a rich diversity of multiple solutions.

The careful reader should note that the above conclusions are valid only
for Theoretical Quantum Control landscapes, where no constraints whatso-
ever are posed. In the context of our work on Quantum Control optimiza-
tion, to be presented in the following chapters, the landscapes under study
will always be underposed by multiple constraints, and thus the degree to
which these theorems are applicable is generally unknown. However, possi-
ble corroboration of the given Quantum Control landscape analysis might
be identi�ed in our work, and will be discussed.

The D-MORPH Algorithm Standard algorithms for the optimization
of optimal control are designed for climbing-up the control landscape and
locating its extrema at the top, but are not capable of examining the level-
sets of the landscape.

A special algorithm for exploring control �elds on a given landscape level-
set was designed by Rothman et al. [133, 134], aiming to produce trajecto-
ries throughout control �elds which correspond to a preserved observable.
This algorithm is referred to as Di�eomorphic Modulation under Observable-
Response-Preserving Homotopy (D-MORPH), and it allows an examination
of various control �elds which attain the same yield, but may have di�erent
physical properties, e.g., �uence.
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The basic idea of the D-MORPH algorithm is to constrain the quantum
dynamics such that the observable is preserved for all control �elds at a
given time. It is convenient to introduce a dummy exploration variable s,
and present the quantum dynamics accordingly (0 ≤ s ≤ 1):

ϵ(s, t)←− ϵ(t)

H (s, t) = H0(s)− µ⃗(s) · ϵ⃗ (s, t)

i~
∂

∂t
|ψ (s, t)⟩ = H(s, t) |ψ (s, t)⟩

⟨O(s)⟩T = ⟨ψ(s, T ) |O|ψ(s, T )⟩

(6.24)

Given the desired target observable value at time T , denoted by CT , the
D-MORPH algorithm aims at locating control �elds ϵ(s, t) that satisfy the
following non-linear equation:

F (s) = ⟨O(s)⟩T − CT = 0 (6.25)

A homotopy path can then be obtained by solving the following di�erential
equation:

dF (s)

ds
=
d ⟨O(s)⟩T

ds
= 0 (6.26)

We only outline the D-MORPH algorithm above, while omitting most of the
explicit derivations of the integration process to be followed. We refer the
reader to [133, 134] for those details.

We conclude this section with the following corollary:

Corollary 6.1.3. A general controllable Quantum Control problem has a

rich landscape with an in�nite number of optimal solutions, corresponding

to perfect control. Climbing-up to the top of the landscape reveals control

level-sets at every yield value, with manifolds which can be explored with con-

tinuous trajectories. The latter may be obtained by means of the D-MORPH

algorithm.

6.1.4 Computational Complexity

The framework of this study is global optimization, where the focus here is
on optimal control of theoretical quantum systems, by means of optimally
determining a control �eld parameterized by n function values. As such,
studying its computational complexity aspect would traditionally consider
the resources required for the optimization algorithm as a function of the
dimensionality of the search space, denoted here by n.

Due to the special nature of quantum systems, studying the time com-
plexity of OCT optimization algorithms with respect to the Hilbert space
dimensionality N is of considerable interest. In fact, when considering the
computational expense of resources for a given OCT optimization problem,
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the propagation of the Schrödinger equation is far more substantial than the
scalability of the control �eld to be optimally determined. Accordingly, the
underlying optimization challenge seems to stem from the size of the quan-
tum system N , rather than from the number of the electric �eld function
values to be optimally determined, n.

Hence, OCT computational complexity research focuses on the Hilbert
space dimensionality N . It should be noted that kinematic optimization

treatment of OCT, which is typically not of this study's focus, considers
Hermitian matrices of dimension O

(
N2
)
as the control. Thus, in the latter

case the time complexity anyway has to be treated in terms of N .
We review here brie�y a single test case.

Time Complexity of a Pure-State Quantum System

Following Corollary 6.1.2, we know that an OCT search can be algorithmi-
cally implemented by means of gradient-based steps. It is thus convenient
to consider the gradient �ow, which is de�ned as the trajectory followed by
the algorithm when the step update follows

−∇UJ (U)

The latter is based upon the kinematic treatment (see Eq. 6.10 and its deriva-
tions). It is then possible to estimate an upper bound for the required time
for convergence into an ε-neighborhood of the global maximum for the class
of observable maximization problems [135]. The upper bound for a pure
initial state system, ρ0 = |i⟩ ⟨i|, then reads:

τmax ≤
1

2 (σ1 − σk+1)

[
ln

(
2Nk

ε2

)
+ 2 · ln

(
(N − k − 2)σk+1

k (σ1 − σk+1)

)]
(6.27)

where N is the Hilbert space dimension, σ1 > σk+1 > . . . > σN are the
eigenvalues of the observable O, and k is the degeneracy of the maximal
eigenvalue, σ1.

OCT optimization has a polynomial number of variables in terms of N ,
and given the estimation of Eq. 6.27 we may conclude that it has a logarithmic
time complexity. It thus belongs to the complexity class CLOG (continuous
log) in the context of the relevant complexity literature (see, e.g., [136]).

OCT computational complexity research is still in its early days, and is
currently under promising study. It includes the investigation of other test
cases, subject to theoretical as well as empirical approaches.
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6.2 Optimal Control Experiments

Optimal Control Experiments (OCE) [116, 137] consider the realization of
Quantum Control in the real-life laboratory, aiming at employing a learning
process for altering the course of quantum dynamics phenomena of speci�c
target-applications. Here, the yield, or the success-rate, is obtained by a
physical measurement of the target application, whereas numerical modeling
of the system's Hamiltonian is not required.

Initially, there were several qualitatively di�erent quantum control schem-
es. Brumer and Shapiro proposed the use of multi-color interference to con-
trol quantum systems [112, 138]: Combinations of harmonic light �elds were
used to control the total and di�erential cross-sections of photo-ionization
and dissociation processes. That approach focused on the frequency-domain
description of the quantum system, and it was followed by a proposed Quan-
tum Control approach by Tannor and Rice, based on exploiting the time-
evolution of wave packets that are produced when quantum systems interact
with short laser pulses [111, 139]. Finally, Rabitz introduced the important
concept of feedback control, where phase-, amplitude- and/or polarization
shaping subject to a closed learning loop are used to guide a quantum system
toward a desired �nal state [113]. Rabitz's approach has been successfully
applied in numerous applications, and practically became the common ex-
perimental routine in the �eld. We shall focus in this study on the feedback
control approach.

The remainder of this section will review experimental Quantum Control,
while focusing in computational and optimization aspects. We do not discuss
the technical realization of the actual laser pulse. This part is mainly based
on [116, 140], as well as on personal lecture notes2.

6.2.1 Femtosecond Laser Pulse Shaping

As presented earlier, the control �eld in OCT corresponds to the electric
�eld, which is tuned in the temporal domain in a straightforward manner
by the optimization routine. However, the realization in OCE dramatically
di�ers [116].

When considering laser pulses in the duration of femtoseconds3, it is
not yet possible to shape pulses in the temporal domain: State-of-the-art
electro-optic switches can currently modulate only in the order of picosec-
onds4. Hence, the pulse shaping in OCE is typically implemented by means
of "slow" manipulation of the spectrum, subject to a realization of the Fourier

2Notes were taken in the course "Quantum Control" of Prof. Herschel Rabitz
(CHM509), Princeton University, Fall 2007.

31fs = 10−15s, i.e., 1 millionth of 1 billionth of a second.
41ps = 10−12s, i.e., 1 trillionth of a second.
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transform. We denote the experimental electric �eld by E(t),

E(t) ∼ R
{∫ ∞

−∞
E(ω) exp(iωt) dω

}
where E(ω) is the spectral �eld. Pulse shapers allow independent ampli-

tude as well as phase modulations, and the spectral �eld may be modeled
accordingly:

E(ω) = A(ω) exp (iϕ(ω))

with A(ω) as the spectral amplitude, and ϕ(ω) as the spectral phase.

Time vs. Frequency The transition between time to frequency domains
is obtained by the Fourier transform, F , whose action can be summarized
as follows:

E(ω) =
1

2π

∫ ∞

−∞
Ẽ(t) exp (−iωt) dt = F

[
Ẽ(t)

]
Ẽ(t) = A(t) exp (iΦ(t)) =

∫ ∞

−∞
E(ω) exp (iωt) dω = F−1 [E(ω)]

(6.28)

where A(t) is the temporal amplitude and Φ(t) is the temporal phase. In
practice, the modeling of the experimental electric �eld is real, and it reads:

E(t) = R
{∫ ∞

−∞
A(ω) exp(iϕ(ω)) exp(iωt) dω

}
(6.29)

The Fourier transform also determines the reciprocal relation between the
spectral width to the temporal width, which is another form of the un-

certainty principle. Given the temporal full-width-half-maximum (FWHM)
pulse width, ∆τlaser,FWHM , and the FWHM spectral width, ∆ωlaser,FWHM ,
the time-bandwidth relation reads:

∆ωlaser,FWHM ·∆τlaser,FWHM ≥ 2πcB (6.30)

where cB ≤ 1 depends on the pro�le of the spectral amplitude A(ω).
It is important to distinguish between the temporal intensity of the �eld,

I(t) =
∣∣∣Ẽ(t)

∣∣∣2 (6.31)

and the spectral intensity of the �eld,

I(ω) = |E(ω)|2 (6.32)

which are strictly not directly related, due to the loss of the phase
information.
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Figure 6.2: The Quantum Control experimental learning loop.

The Control Phase Generally speaking, the control function in spectral
modulation consists of the spectral amplitude function A(ω) as well as of
the spectral phase function ϕ(ω). Most Quantum Control processes are
more sensitive to the phase than to the amplitude, and phase-only shaping
is typically su�cient for attaining optimal control. We thus choose to restrict
our study to phase modulation, and to consider the spectral function A(ω) as
�xed. The latter is then well-approximated by a Gaussian which determines
the bandwidth, or the pulse duration, accordingly. Note that shaping the
pulse with phase-only modulation guarantees the conservation of the pulse
energy.

We thus consider only ϕ(ω) as our control function: It de�nes the spec-
tral phase at n frequencies {ωi}ni=1, that are equally distributed across the
spectrum of the pulse. These n values {ϕ(ωi)}ni=1 correspond to n pixels
of the pulse shaper, and they would become the decision parameters to be
optimized in the experimental learning loop:

ϕ(ω) := (ϕ(ω1), ϕ(ω2), ..., ϕ(ωn)) (6.33)

Figure 6.2 illustrates the closed learning loop experimental Quantum Control
process.

6.2.2 Laboratory Realization: Constraints

The realization of the quantum system in the laboratory poses constraints on
the quantum dynamics, and may lead to a di�erent OCE search landscape,
in comparison to its equivalent OCT landscape. The OCT theorems which
guarantee a trap-free pathway to perfect control from any location in the
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landscape, with gradient-based steps and in logarithmic time complexity,
may no longer be valid in OCE landscapes. Generally speaking, it is not
clear how do Quantum Control landscapes appear in the laboratory.

We discuss here brie�y several aspects of laboratory experiments which
are likely to be translated into constraints in the OCE landscape [140].

The crucial component of laser pulse shaping process is the phase modu-
lation, which is typically exposed to waveform distortion e�ects (for a com-
prehensive study see [141]). We outline here several modulation components.

Pixelation and Replica Pulses In practice, the pulse shaping process
is implemented by a so-called Spatial Light Modulator (SLM), which is
typically based on Liquid Crystal Display (LCD). This approach considers
individual pixels subject to rectangle-activation-functions, squ(ν), ideally
sharply-de�ned and with no gaps between each other. This is referred to as
the staircase approximation. The time modulation of these step-functions is
attained by means of their inverse Fourier transform,

F−1 [squ(ν)] ∼ sinc(τ)

where the width of sinc(τ) = sin(τ)
τ is inversely proportional to the pixel

width. Explicitly, the resulting temporal electric �eld in this pixelization
can be described as follows:

e(t) =
∑
n

ẽ(t− nτ) · sinc
(
πt

τ

)
, (6.34)

with ẽ(t) as the desired electric �eld, and where τ = 1
∆ν is the inverse

frequency spacing per pixel.
Practically, step-function gaps between SLM electrodes are responsible

for the construction of so-called parasitic replica pulses in the temporal do-
main, which are located at the zeros of the sinc envelope function.

Pulse Break-Up A linear phase function results in the time shift of the
temporal pulse. This can easily be derived by a change of variables, or
by the application of the so-called Fourier Shift Theorem (see, e.g., [142]).
The in�uence of the replica pulses becomes more substantial when they are
moved from the zeros of the envelope sinc function, by breaking-up the
pulse energy into multiple parasitic replica pulses. This is equivalent to
the following statement: The steeper the linear phase, the more pronounced

become the replica pulses, which generally result in lower suboptimal yields

[140].

Phase Range: Wrapping Phases that di�er in 2π radians are mathe-
matically equivalent. This periodic nature of the phase in [0, 2π]n practically
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poses periodic boundary conditions on the modulator. Given 0 < ε ≤ 2π,
the so-called phase wrapping operator is implemented as follows:

ϕi = 2π + ε −→ ϕ̃i := ε

ϕj = −ε −→ ϕ̃j := 2π − ε (6.35)

or simply as ϕ̃i := ϕi mod 2π.
From an optimization perspective, this means that the search space is

practically an n-dimensional hypercube spanning a length of 2π in each di-
mension. It is likely to have implications on the optimization routine in use.
In terms of constraints, wrapped phases may be exposed to singularity e�ects
(0 − 1 jumps), but it is not considered to be a signi�cant e�ect. Thus, we
consider it here more as a mathematical feature of the search space, rather
than a constraint.

Resolution The number of pixels, n, determines the control resolution,
and poses a direct constraint on the shaped-pulse in the temporal domain:
Due to the reciprocal nature of the Fourier transform with respect to fre-
quency versus time, spectral resolution determines the upper bound for tem-
poral resolution. For instance, typical laboratory realizations currently con-
sider n = 128 pixels with spectral resolution of 0.25 nm/pixel, which allow a
shaped pulse with maximum temporal length of 8.5ps at FWHM bandwidth
of 10nm.

We hereby summarize the main laboratory constraints in a typical quan-
tum system realization:

1. Temporal or spectral resolution of the �eld Limited spectral res-
olution in the realized shaper implies limited pulse temporal resolution.
State-of-the-art LCD pulse shapers contain 640 pixels to be tuned.

2. Limited �eld �uence, limited �eld intensity Potential damage
to di�erent experimental components restricts in practice the applied
�eld �uence and its intensity.

3. Limited spectral bandwidth or pulse duration State-of-the-art
commercial lasers can produce nowadays pulses at the duration of ∼
20 fs.

4. Proper basis The actual representation of the control phase, e.g.,
pixel basis, polynomial expansion basis, etc., poses by itself an addi-
tional constraint on the landscape.

5. Noise Existence of laboratory noise, by de�nition, poses constraints
on the landscape.
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6.3 Experimental Procedure

In this study we are interested both in numerical modeling of quantum sys-
tems, as well as in their real laboratory experiments. The numerical modeling
is typically driven by a known Hamiltonian, but designed in a laboratory-
oriented manner, as will be described shortly. Essentially, it is OCT com-
bined with some OCE characteristics.

In our calculations, we choose to restrict this study mostly to noise-free
simulations, as we are interested in the physics of the system, rather than
conducting an actual simulation of a real laboratory experiment. On this
note, we consider the absence of noise in our calculations as a blessing, as it
allows for clean interpretation of the physics of the system. In one particular
case, we will carry out simulations with noise.

Generally speaking, considering the various quantum systems under in-
vestigation in this study, the goal that we would like to achieve in our exper-
imental work is three-fold, and may be outlined as follows:

1. A preliminary part of our work on each quantum system is devoted
to a large extent to an investigation of the performance of speci�c
derandomized Evolution Strategies, as well as parameterizations, with
respect to the given optimization task. As suggested in Section 1.4.4,
this would include the comma-strategy DES variants.

2. After having identi�ed the routines which perform best on our prob-
lems, further work would typically concentrate on the physical interpre-
tation of the obtained optimal solutions, when applicable to the system
under study. In particular, we will aim at clarifying why certain pulse
structures perform better than other trial solutions. This will also be
accompanied with investigation of pulse-intensity, �eld scalability, and
other de�ning features.

3. Finally, we will be interested in applying miscellaneous optimization
techniques, at the level of decision making: multi-objective optimiza-

tion, and the application of niching.

Next, we provide technical details concerning the two classes of experi-
mental work conducted in this study: numerical simulations and laboratory
experiments.

6.3.1 Numerical Simulations

We present here the numerical modeling of our laser pulse shaping frame-
work, which is in essence valid for all the numerical calculations conducted in
this work, unless speci�ed otherwise. The idea is to simulate the experimen-
tal pulse shaping process, in terms of control de�nition, physical limitations,
etc.
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As discussed earlier, in our calculations the control is solely the phase
function ϕ(ω). It de�nes the phase at n frequencies {ωi}ni=1 that are equally
distributed across the spectrum of the pulse. These n values {ϕ(ωi)}ni=1 are
the decision parameters to be optimally determined. Upon their calibration
they are numerically interpolated into ñ = 214 points, using the spline()

procedure [143], for the calculation of the electric �eld in Eq. 6.29. The latter
is implemented by means of the FFT() procedure [143].

The numerical resolution is naturally underposed to a con�ict with the
expected optimization e�ciency. In order to achieve a good trade-o� between
the two, i.e., keeping both resolution and optimization e�ciency as high as
possible, the value of n = 80 turned to be a good compromise. The search
space is therefore an 80-dimensional hypercube spanning a length of 2π in
each dimension.

The spectral function A(ω) is taken to be a Gaussian, centered at 800nm,
with a width chosen such that the full-width-at-half-maximum (FWHM)
length of the Fourier transform limited (FTL) pulse (obtained by setting
ϕ(ω) ≡ 0) is ∆τ ≈ 100fs.

Most of the simulations were run with FORTRAN code, as written and
provided by Prof. Marc Vrakking, of Amolf-FOM, Amsterdam5. This was
later combined with a MATLAB version of the original code, as implemented
by the author. For the two-photon processes reported in Chapter 7 we used
a LabView simulator of Princeton University, coded by Jonathan Roslund.

6.3.2 Laboratory Experiments

The laboratory experiments reported in this work were all conducted at the
Frick Laboratory, Rabitz Group, Chemistry Department, Princeton Uni-
versity6. The laser source was a Ti:sapphire femtosecond system, with a
Tsunami oscillator and a 1kHz 1.8mJ Spit�re ampli�er. A pulse was cen-
tered at ∼ 800nm, with a bandwidth of ∆λ ≈ 10nm, yielding ∆τ ≈ 100fs
pulse duration at FWHM. The employed SLM consisted of 128 pixels (phase-
only modulation, liquid-crystal), but the experiments typically used 64 pix-
els, by coupling together pairs of adjacent pixels, unless speci�ed otherwise.
All algorithms were coded in LabView.

Reference Routine in the Lab: Genetic Algorithm

Genetic Algorithms (GAs) are the most common optimization routines in
QC experiments in the vast majority of physics laboratories, likely due to

5Dedicated training was given by Marc Vrakking and Christian Siedschlag, and I
thank them both for that.

6All experiments were conducted under the dedicated supervision of Jonathan

Roslund of the Rabitz Group, whose support in running the experiments has been price-
less.
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historical reasons. As a reference to speci�c derandomized ES that we apply
in our experiments, we shall also report on the GA performance.

The Traditional GA We use the traditional GA [22], with bitstring rep-
resentation of l = 6 bit resolution per pixel. It employs a �xed population
of µ = 30 individuals. The mutation rate for a bit-�ip is pm = 0.005, and
the selection mechanism keeps the �ttest o�spring, as well as the single best
individual of the previous generation (elitism). It should be noted that these
parameters were collectively optimized to allow su�cient resolution so as to
arrive at the highest quality solution with the fastest convergence.



You should understand the physics, write down the correct

equations, and let nature do the calculations.

Peter Debye

Chapter 7

Two Photon Processes

7.1 Introduction

The �eld of non-linear optics describes optical phenomena which are ob-
served when high intensity light passes through media. The non-linearity
is due to the interaction between the light, typically a laser �eld, and a di-
electric media, whose �eld-induced polarization responds non-linearly to the
incident electric �eld.

Given the temporal intensity of the electric �eld, I(t), its non-linear signal
of the kth order is modeled for k > 1 as:

Signal
(k)
NL ∝

∫ ∞

−∞
Ik(t)dt, (7.1)

corresponding to the interaction of k photos.
The �eld of non-linear optics o�ers a variety of popular Quantum Con-

trol applications. Second-order variants, which correspond to two-photon
processes, are particularly attractive because of their easy implementation
in the laboratory, as well as their known mathematical formulation. Two-
photon processes can be utilized to explore experimental Quantum Control
landscapes, and also can form a realistic testbed for global optimization al-
gorithms.

This chapter is devoted to the formal de�nition of two-photon processes,
their mathematical description, and to the application of optimization rou-
tines to their signal-maximization problems in the laboratory.

7.2 Second Harmonic Generation

Second harmonic generation (SHG) or frequency doubling is a two-photon
process in which an electric �eld interacts non-linearly with a material and
generates an output photon with double the energy of two input photons.
The total energy of the output light is proportional to the integrated squared

125
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intensity of the primary pulse, as expected from a second-order non-linear
process.

The time-dependent pro�le of the laser �eld is exactly as given in Eq.
6.29. The SHG signal is then de�ned by:

SHGt ≡ St =
∫ ∞

−∞
I(t)2 dt =

∫ ∞

−∞
|E(t)|4 dt, (7.2)

i.e., integration over time of the intensity. SHG is a process that turns out to
be a good test case in the laboratory, and its investigation contributes to the
understanding of other processes. This is because the SHG is a measure of
the pulse duration, and this property is useful as an auxiliary characteristic.
From the theoretical point of view, the SHG is a simple test function, with
some interesting mathematical properties that will be fully derived here, but
yet not an easy optimization task for global optimizers.

7.2.1 Total SHG

In order to gain a better insight into the problem, we provide here the reader
with some of its mathematical properties. Especially, we would like to derive
the equivalence between time and frequency pictures. The following section
is mainly based on Bracewell [142].

De�nition 7.2.1. Given the spectral amplitude equipped with the complex
phases, E(ω) = A(ω) exp(iϕ(ω)), consider its autocorrelation (convolution)

function E2(ω):

E2(ω) = E(ω) ∗ E(ω) =

∫ ∞

−∞
E(Ω) · E(ω − Ω)dΩ

We would like to show how this autocorrelation function in the frequency
domain is linked to the time domain:

Theorem 7.2.2. The autocorrelation function of the spectral amplitude,

E2(ω), is proportional to the Fourier transform of the squared time-dependent

electric �eld, i.e.:

E2(ω) ∝
∫ ∞

−∞
Ẽ(t)2 exp (−iωt) dt (7.3)



7.2. Second Harmonic Generation 127

Proof.

E2(ω) =

∫ ∞

−∞
E(Ω) · E(ω − Ω)dΩ =

=

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
Ẽ(t) exp (−iΩt) dt

]
·
[
1

2π

∫ ∞

−∞
Ẽ(τ) exp (−i(ω − Ω)τ) dτ

]
dΩ =

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ẽ(t)Ẽ(τ) exp (−iΩ(t− τ)) · exp (−iωτ) dΩ dt dτ =

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
Ẽ(t)Ẽ(τ)δ(t− τ) exp (−iωτ) dt dτ =

=
1

2π

∫ ∞

−∞
Ẽ(t)Ẽ(t) exp (−iωt) dt =

=
1

2π

∫ ∞

−∞
Ẽ(t)2 exp (−iωt) dt

where δ(x− x̃) is the Dirac delta function.

Theorem 7.2.3. (Plancherel's Theorem) Given f(x), which has the

Fourier transform F (s), the integral over the squared modulus of f(x) is

equal to the integral over the squared modulus of its spectrum F (s):∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (s)|2ds

See [142]. Thus, we can conclude from Theorems 7.2.2 and 7.2.3 that∫ ∞

−∞
|E2(ω)|2dω =

∫ ∞

−∞
|E(t)|4dt

and, equivalently, in terms of the intensities

St =

∫ ∞

−∞
I2(ω)dω =

∫ ∞

−∞
I(t)2dt (7.4)

where I2(ω) = |E2(ω)|2.

Global Maximum

Theorem 7.2.4. The Total-SHG signal is maximized by the phase being any

linear function of frequency, and in particular by the constant phase:

argmaxϕ(ω) {St (ϕ (ω))} ≡ a · ω + b
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Figure 7.1: An illustration of the frequency doubling e�ect in Second Har-
monic Generation. Construction of E2 (ω) out of E (ω).

An important remark should be made concerning the existence of a single
optimal solution for the SHG maximization problem: Due to the use of
second-order perturbation theory, the constant phase is a point in the
control space (the generalization to a linear phase stems from symmetry),
i.e., the level-set collapses into a single point. In higher-order corrections for
SHG the maximally attained yield can be obtained by various other phase
pro�les.

Figure 7.1 provides the reader with an illustration for the so-called fre-
quency doubling e�ect - the contribution of two phase points around the cen-
tral frequency ω0 at E (ω), ϕ (ω0 + ω1) and ϕ (ω0 + ω2), to the construction
of Ẽ (ω) with ϕ (2 · ω0 + ω1 + ω2). Note the shift in the central frequency,
and the scaling of the Gaussian.

7.2.2 Filtered SHG

We consider another second-order quantum optical system, which could be
considered as a �ltered case of the SHG system. It corresponds to a two pho-
ton absorption (TPA) process, whose model describes, within the limits of
second-order time-dependent perturbation theory, the probability of making
a transition from a ground state |g⟩ to an excited state |e⟩, upon the acti-
vation of the laser �eld. Thus, a speci�c transition frequency is considered
here, ωeg, which practically �lters the signal,

SHGf ≡ Sf (ωeg) =

∫ ∞

−∞
δ (ωeg − ω) I2(ω)dω,

by means of the Dirac delta function δ (Ω− Ω′). It explicitly reads

Sf (ωeg) =

∣∣∣∣∫ ∞

−∞
E(ω)E (ωeg − ω) dω

∣∣∣∣2 (7.5)
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Figure 7.2: A spectral illustration for the total-SHG (left) versus the �ltered-
SHG (right) signals. Figure courtesy of Jonathan Roslund.

Global Maximum

Theorem 7.2.5. The �ltered-SHG signal is maximized by the phase being

any odd function of frequency antisymmetric about
ωeg

2 , i.e., spectral phases

of the form ϕ(
ωeg

2 − ω) = −ϕ(
ωeg

2 + ω).

See [144, 145]. Figure 7.2 provides an illustrative comparison between
the two SHG variants considered here.

Problem Di�culty: Numerical Assessment

In order to assess the optimization di�culty of the Second Harmonic Gen-
eration maximization problems, we considered numerical simulations of the
two SHG problem variants and conducted the following simple statistical
test. We considered phase functions pixelized by n = 64 function values,
which are randomly initialized in the interval [0, 2π]64. We then gradually
transformed the given random phases into a zero-phase in two di�erent rou-
tines: (1) Setting function values to zero when consistently indexing from
right to left, or (2) Setting function values to zero in random permutation
of indices, with no repetition. Both routines eventually obtain zero-phases,
which attain the maximal yield of 1 for both SHG problem variants.

Figure 7.3 presents typical runs for the two routines when applied to both
SHG problem variants. It is observed in these plots that approximately 50%
of the function values must be set to zero in order to enhance the yield
value, for all cases. Once this threshold is exceeded, the yield value increases
consistently until it reaches the value of 1. The actual pro�les of routine
(1) versus routine (2) di�er, for both SHG variants. More variables are
required to be set to zero in the random indexing routine, in comparison to
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Figure 7.3: Transforming randomly-initialized phases into a zero-phase,
pixel-by-pixel, either by (1) Consistently indexing the phase function from
right to left, or by (2) Randomly selecting phase function indices, without
repetition. The attained yield per index-step is recorded for each test-case.
Typical runs are presented for the two routines applied to the SHG problem
variants. Left: Filtered-SHG system; Right: Total-SHG system.

the consistent indexing. This is due to the shape of the weighting function
(i.e., a Gaussian), which limits the contribution to the yield value from pixels
which are not in the proximity of the central frequency.

This statistical test reveals that the SHG problems under investigation
are non-separable upon following the formal de�nition.

7.3 Numerical Simulations

We present here results of the four derandomized ES comma-variants when
applied to numerical simulations of second-order photon processes: The max-
imization of the Total-SHG as well as the Filtered-SHG signals.

7.3.1 Preliminary ES Failure: Stretched Phases

When applied to both SHG simulations, the derandomized ES variants suf-
fered from pre-mature convergence to sub-optimal solutions of low yield.
Upon examination of the attained optimized phases in the decision space,
they were always observed to be highly steep linear phases. We o�er the
following explanation for that.

The ES is not subject to any restrictions concerning its decision param-
eters, in particular in the context of the periodic nature of the phase. It
seems that an unrestricted search, as employed by the ES variants in hand,
is likely to stretch the candidate phases, with no way to reverse it. It su�ers
accordingly from convergence to highly steep linear phases with sub-optimal
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Table 7.1: Derandomized Evolution Strategies optimizing the Total-SHG
simulation: Mean and standard-deviation of attained yield over 100 runs for
the three procedures � unrestricted, wrapped and bounded.

Algorithm Unrestricted Wrapped Bounded

DR1 0.208± 0.072 0.873± 0.187 0.574± 0.189

DR2 0.181± 0.064 0.967± 0.019 0.725± 0.185

DR3 0.457± 0.198 0.718± 0.274 0.529± 0.278

CMA 0.581± 0.136 1± 0 0.997± 0.002

Table 7.2: Derandomized Evolution Strategies optimizing the Filtered-SHG
simulation: Mean and standard-deviation of attained yield over 100 runs for
the three procedures � unrestricted, wrapped and bounded.

Algorithm Unrestricted Wrapped Bounded

DR1 0.257± 0.087 0.666± 0.247 0.713± 0.152

DR2 0.248± 0.091 0.804± 0.195 0.908± 0.125

DR3 0.539± 0.162 0.762± 0.209 0.554± 0.173

CMA 0.487± 0.134 0.990± 0.008 0.964± 0.052

yield values, as outlined earlier in Section 6.2.2. By implementing periodic

boundary conditions into the ES algorithms, by means of coupling the wrap-
ping operator (Eq. 6.35) to the mutation operator, this problem was solved.
This procedure will be referred to as the wrapped procedure.

As a third procedure, we also considered the application of a boundary
operator that �xes an exceeded value to the lower or upper bounds. Given
ε > 0, it reads:

ϕi = 2π + ε −→ ϕ̃i := 2π

ϕj = −ε −→ ϕ̃j := 0
(7.6)

It is referred to as the bounded procedure.

7.3.2 Numerical Observation

Tables 7.1 and 7.2 summarize the numerical results of the application of the
four derandomized ES comma-variants to the total-SHG and �ltered-SHG
simulation problems, respectively, subject to the three speci�ed procedures,
with n = 64 decision parameters. There are two clear observations from
the given calculations:

1. The wrapping operator seems to be an essential component for the un-
restricted ES optimization, and should be implemented into ES when
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optimizing "phase" variables on a QC landscapes. This is an expected
conclusion, given the nature of the search space. However, it is inter-
esting to note the relatively high standard deviations for the results
obtained subject to wrapping for the �ltered-SHG case for the �rst
three DES variants. Also, it is observed that the bounded approach
works better for the DR2 on the �ltered-SHG landscape.

2. The CMA outperformed the other algorithms on these two landscapes,
with consistent winning performance. The DR2 was second-best, and
it performed in a highly satisfactory manner. We thus hold two DES
variants, each representing �rst- or second-order information approach,
respectively, which performed well on these QC landscapes.

Intermediate Discussion

We found that employing the ES variants with default settings unrestric-
tively on the given QC landscapes resulted in pre-mature convergence to
sub-optimal phases with highly sloped linear pro�les. We analyzed this ef-
fect, and introduced the wrapping operator into the ES framework. The
latter solved the observed problem.

7.4 Laboratory Experiments

We report here on laboratory experiments where we aimed at optimizing the
two quantum control systems described in Section 7.2. Due to the tremen-
dous e�ort and time which are required for a reliable experiment, we had no
choice but to restrict ourselves to a limited number of experiments as well
as optimization routines.

We chose to employ three optimization routines in the laboratory:

• DR2: First-order DES.

• CMA: Second-order DES.

• GA: Laboratory reference.

Concerning the technical details, for total-SHG signal, St, the ampli�ed
pulses are delivered to a 100 µm type-I BBO crystal, and the time integrated
SHG signal is recorded with a photodiode and boxcar integrator. For the
�ltered-SHG signal, Sf , unampli�ed seed pulses are focused onto a 100 µm
type-I BBO crystal, and the resultant up-converted light is analyzed with a
spectrometer. Regarding the actual yield values recorded by us, we choose
to normalize the FTL signal as yield 1.0 for both systems.

It should be noted that the SHG optimization problems have been widely
investigated at several levels, including at laboratory experiments [146],
where it was shown to have a highly complex landscape.
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Table 7.3: Laboratory SHG Optimization: Performance Evaluation. The
experimental results of the two SHG systems, averaged over 10 experiments.
The �nal yield (averaged over the last 50 iterations) and the number of
evaluations required to cross a yield threshold of 0.90 are considered here.

Routine Filtered-SHG Total-SHG
Avg. Yield 0.9 Eval Avg. Yield 0.9 Eval

GA 0.95 4665 0.95 5557

DR2 0.93 2159 0.72 NA
CMA 0.95 841 0.98 766

ES Failure Revisited: Stretched Phases When applied to the exper-
imental setup, the derandomized ES variants initially su�ered from pre-
mature convergence to sub-optimal solutions of yield ≈ 0.75, where the
maximum value is 1.0. Upon examination of the attained optimized phases
in the decision space, the stretching e�ect as reported in Section 7.3.1 was
observed. Thus, we used the wrapping operator in the two DES variants
in all the reported experiments. The GA, on the other hand, did not typi-
cally locate highly-steep linear phases since the [0, 2π] bounds are implicitly
implemented by means of the phenotypic mapping (see, e.g., [22]).

7.4.1 Performance Evaluations

Table 7.3 presents the results of the two reported systems, averaged over
10 experiments. We consider the �nal yield (averaged over the last 50 itera-
tions), as well as the number of evaluations required to cross a yield threshold
of 0.90, as the performance criteria per experiment. Figure 7.4 presents aver-
aging of the runs, with attained yield as a function of the required number of
function evaluations. Note that this averaging procedure takes into account
all 10 runs, whereas the convergence data shown in Table 7.3 considers only
the relevant runs that exceeded the 0.90 yield threshold. Figure 7.5 presents
histograms for the di�erent algorithms with �nal yield versus the number of
runs.

As re�ected from the experimental results, the CMA performed best on
the given experimental systems, both in terms of �nal yield as well as con-
vergence speed. We would like to emphasize the extraordinary boost of con-
vergence speed provided by the CMA relative to the GA, which is signi�cant
in the laboratory. Moreover, the CMA has a sharp and rapid convergence
pro�le, in contrast to the ine�cient hill-climbing capability of the GA. This
pro�le is easy to identify as there is no ambiguity about convergence, and
thus it is another attractive feature for the laboratory user.

Next, we discuss the experimental results and the algorithmic behavior.
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Figure 7.4: Averaged runs of the algorithms over 10 runs. Left: Filtered-SHG
system; Right: Total-SHG system.

Figure 7.5: Success-rate (yield) histograms. Left: Filtered-SHG system;
Right: Total-SHG system.

Diversity of Solutions

As mentioned earlier in Section 7.2.2, the �ltered SHG system possesses a
family of nontrivial phases that correspond to global maxima. Interestingly,
each run for the �ltered SHG case converged to a distinct antisymmetric
phase. This collection of di�erent solutions provided a practical perspective
concerning the richness of QC landscapes and their underlying level sets.

Sensitivity to Noise

The CMA-ES and the GA performed in a satisfactory manner on the given
control problems and did not seem to be signi�cantly impaired by the ex-
istence of noise in the experimental system. The DR2, on the other hand,
su�ered from high-sensitivity to the initial step-size. Its performance was dis-
appointing, in particular in comparison to noise-free calculations that were
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reported in the past [147, 148]. A proposed explanation for this behavior
could be the lack of recombination, which has been shown to be a crucial ES
component in noisy environments (see, e.g., [149]).

Covariance Learning

Recording the CMA data during the optimizations allows an analysis of
the evolutionary search process. Upon examination of the data, it is found
that the covariance matrix remains diagonal during the search (Eq. 1.41), or
equivalently, the CMA does not utilize its second-order mechanism (i.e., ro-
tations) when climbing up the landscape. This is not a surprising result, but
rather an important piece of experimental evidence toward the corroboration
of the OCT landscape analysis as outlined in Corollary 6.1.2.

Figure 7.6 presents a typical CMA run for the optimization of total-SHG
in the laboratory and shows the yield and step-size upon function evaluations.
Figure 7.7 presents the square-roots of the covariance matrix eigenvalues as
a function of the number of experiments as well as the Euclidean distances
between the best phase variables of successive iterations, i.e.,

d(g+1) = ∥ϕ⃗(g+1)
best (ω)− ϕ⃗(g)best(ω)∥, (7.7)

where ϕ⃗best(ω) is as in Eq. 6.33.
We conducted an equivalent test in a noise-free simulator for the total-

SHG problem1. Figure 7.8 presents a typical CMA run on the simulator. The
convergence pro�le on the simulator is observed to be similar to the labo-
ratory experiment, i.e., rapid climbing-up of the landscape without utilizing
the second-order mechanism. However, upon approaching the top of the

landscape, one of the covariance matrix eigenvalues dramatically grows, as
shown in Figure 7.9. This behavior was observed to be typical in all runs.
The corresponding eigenvector is always a �at phase, suggesting that the
CMA discovers the invariance of a constant phase on the total-SHG signal.
The phase Euclidean trajectories are plotted as well in Figure 7.9, showing
some minor activity during this growth stage, corresponding to super-�ne
tuning of the spectral phase. The yield values, nonetheless, do not seem to
be further improved during this process, at least in the precision available.
In practice, the parameter adaptation during this �ne-tuning stage produces
�tness variations below that of the system noise in the laboratory, which
explains its absence in laboratory optimizations.

Simulations: Zeroth-Order CMA

Given the experimental observation reported in the previous section, we
were interested in testing the CMA while removing its covariance learning

1The simulator was implemented in LabView with the Lab2 package.
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Figure 7.6: CMA optimization of the Total-SHG in the laboratory. Yield
(solid line, left axis) and step-size (dashed line, right log-scaled axis), versus
function evaluations.

Figure 7.7: CMA optimization of the Total-SHG in the laboratory. Square-
root of the 64 eigenvalues of the covariance matrix (solid thin lines, left axis),
and phase Euclidean trajectories (bold points, right log-scaled axis), versus
function evaluations. Missing trajectory points correspond to zero values.

components. In essence, we leave the CMA only with the step-size as a
strategy parameter, and �x the covariance matrix as an identity matrix.
This is a zeroth-order ES with normal mutations subject to hyperspheres as
the equidensity probability surfaces. In order to assess the zeroth-order CMA
behavior on the given QC systems, we conducted additional simulations with
two variants of the algorithm:

• (µW , λ)-CMA with C = I.

• (1, λ)-CMA with C = I.

The simulations were conducted for both systems - total-SHG as well as
�ltered-SHG - both with a noise-free simulator and a simulator with noise.
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Figure 7.8: CMA optimization of the Total-SHG on a noise-free simulator.
Yield (solid line, left axis) and step-size (dashed line, right log-scaled axis),
versus function evaluations.

Figure 7.9: CMA optimization of the Total-SHG on a noise-free simula-
tor. Square-root of the 64 eigenvalues of the covariance matrix (solid thin
lines, left log-scaled axis), and phase Euclidean trajectories (bold points,
right log-scaled axis), versus function evaluations. Missing trajectory points
correspond to zero values. The single exploding eigenvalue can easily be
identi�ed in this scale.

The results of the simulations show that the CMA performance is not
hampered at all on both systems when removing its covariance learning com-
ponents: the (µW , λ)-CMA withC = I performs as well as the original CMA,
in terms of �nal attained yield and convergence speed. This observation is
valid for noise-free as well as for noisy simulations. However, when the
weighted recombination operator was removed, the (1, λ)-CMA with C = I
did not converge, nor did it even climb-up from the initial yield at the bottom
of the landscape. We thus conclude that it is possible to optimize the given
simulated QC landscapes by a zeroth-order ES, as long as the weighted-
recombination operator is kept.
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7.4.2 Discussion

We presented a survey of derandomized Evolution Strategies and a Genetic
Algorithm to a set of Quantum Control systems in the laboratory. As far
as we know, this was one of the �rst applications of derandomized ES to
experimental QC in general, and the �rst study to conduct a comparison
between ES to GA as well as to explore the evolutionary path of the CMA,
in particular. We would like to mention, however, two studies [150, 151] that
applied Evolution Strategies to OCE, and explored a speci�c QC system
both in experiments and simulations. The latter studies concluded that the
employed Evolution Strategies were promising optimization routines.

While the QC systems examined here possess easily understood global
optima, the search is conducted over a highly complex, curvilinear control
landscape, which provides a good testbed for optimization algorithms. From
the practical point of view, these systems are relatively easy for implemen-
tation in the laboratory.

We found that employing the ES variants with default settings unre-
strictively on the given QC landscapes resulted in pre-mature convergence
to sub-optimal phases with highly sloped linear pro�les. We analyzed this
e�ect, and introduced the wrapping operator into the ES framework. The
latter solved the observed problem.

The CMA-ES outperformed the other algorithms in terms of �nal yield
as well as in convergence speed. It introduced a signi�cant increase in con-
vergence speed to the typical performance of the GA in the laboratory and
is a promising tool for future laboratory experiments. While analyzing its
behavior, it was experimentally con�rmed that its second-order mechanism
was not utilized when climbing-up the landscape. This may be considered
as an experimental corroboration of the OCT landscape analysis.

We also conducted noise-free simulations of the CMA-ES applied to the
systems. The latter calculations revealed interesting behavior of the covari-
ance matrix, upon approaching the top of the landscape. A single eigenvalue
consistently explodes with a corresponding eigenvector of a �at phase. We
suggest that this is due to the fact that the CMA successfully learned the
invariance of a constant phase in these problems. Furthermore, we consid-
ered zeroth-order versions of the CMA in simulations, where the covariance
learning component was removed. The latter performed extremely well, as
long as the weighted-recombination operator was kept.



It is the theory that decides what can be observed.

Albert Einstein

Chapter 8

The Rotational Framework

The main Quantum Control application of this study is dynamic molecular

alignment, which will be presented in the next chapter. The current chap-
ter considers the rotational framework of molecules, as a preparation for
the alignment application. We describe here the formal numerical modeling
basis, and present calculations for the optimization of population transfer.
Finally, we apply our niching algorithms to the population transfer problem.

8.1 Numerical Modeling

We consider here Hamiltonians that consist of a molecular part H0, while
the interaction with the semi-classical laser �eld subject to the dipole ap-

proximation is expressed by V :

H (t) = H0 − V
V = µE(t) cos(ωt)

(8.1)

The envelope of the laser �eld, which completely determines the dynamics,
is exactly as introduced in Eq. 6.29:

E(t) = R
{∫ ∞

−∞
A(ω) exp(iϕ(ω)) exp(iωt) dω

}

8.1.1 Preliminary: Two Electronic States Systems

We start by outlining the fundamental details of a two-electronic-state sys-

tem. This section is mainly based on [152].
Consider a system with two electronic states: The ground state |g⟩, and

an o�-resonant excited state |e⟩ with energy ~ω0. Its wavefunction may be
described as follows:

|Ψ(t)⟩ = αg(t) |g⟩+ αe(t) exp(−iω0t) |e⟩ (8.2)

139
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Upon applying the Schrödinger equation,

i~
∂ |Ψ(t)⟩
∂t

= H |Ψ(t)⟩ , (8.3)

by using a Hamiltonian of the form of Eq. 8.1, two coupled di�erential equa-
tions are obtained:

i~α̇g(t) = − exp(−iωt)E(t) ⟨g|µ |e⟩αe(t)
i~α̇e(t) = − exp(iωt)E(t) ⟨e|µ |g⟩αg(t)− ~∆αe(t)

(8.4)

where ∆ = ω − ω0 is the so-called detuning.
In order to keep the description as general as possible, the peak �eld

strength is not �xed explicitly; Instead, we set the peak Rabi frequency
Ω(t) for the transition between the electronic states |g⟩ and |e⟩, which is
proportional to the product of peak �eld strength and the coupling matrix
element between |g⟩ and |e⟩:

Ω(t) =
⟨g|µ |e⟩ Ẽ(t)

2~
, (8.5)

where we used the complex form of the electric �eld, Ẽ(t) (see Eq. 6.28).
Also, it is convenient to note:

Ωge =
⟨g|µ |e⟩

2~
(8.6)

The di�erential equations for the expansion coe�cients of the wavefunction
may be written now in a matrix notation as follows:

i

(
α̇g(t)
α̇e(t)

)
= −

(
0 Ω(t)

Ω∗(t) ∆

)(
αg(t)
αe(t)

)
(8.7)

The Rabi frequency thus determines the interaction strength in our framework.

8.1.2 Rotational Levels

We proceed by describing the rotational framework of the molecules. This
section is mainly based on [153]. We consider a model of diatomic linear
molecules that populate rotational levels in a given temperature T . The
molecules are characterized by their rotational quantum number, J , as well
as by the projection of the angular momentum on the laser polarization axis,
M . We take the molecule to be a rigid rotor, which allows a description of
its wavefunction solely in terms of the rotational eigenstates |JKM⟩, where
K = 0 for a diatomic molecule. We take into account the two electronic

states, as presented earlier: Ground state |g⟩ and o�-resonant excited state
|e⟩. The wavefunction, for a given M , is thus expanded as follows:

|ΨM (t)⟩ =
Nrot∑
J=M

α
(g)
JM (t) |gJM⟩+ exp(−iω0t)α

(e)
JM (t) |eJM⟩ (8.8)
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The molecular component of the Hamiltonian can be divided into two parts,

H0 = Helec +Hrot, (8.9)

that correspond to the following eigenstates:

Helec |gJM⟩ = 0
Helec |eJM⟩ = ~ω0 |eJM⟩

(8.10)

Hrot |gJM⟩ = BgJ(J + 1) |gJM⟩
Hrot |eJM⟩ = BeJ(J + 1) |eJM⟩ (8.11)

with Bg and Be as the rotational constants of the molecule.
The time dependence description of the molecular wavefunction is given

by:

i~
∂ |ΨM (t)⟩

∂t
= H |ΨM (t)⟩ (8.12)

The laser �eld induces transitions between the rotational states which, in
the o�-resonant case, occur via subsequent Raman processes. The transitions
between |g⟩ and |e⟩ are assumed to proceed via the selection rules of the
quantum numbers ∆J = ±1,∆M = 0.

The derivation concludes with the following di�erential equations for the
expansion coe�cients of the wavefunction:

α̇
(g)
J (t) = − i

~
BgJ(J + 1)α

(g)
J (t) + iΩ(t) ⟨J | cos θ |J + 1⟩α(e)

J+1(t)+

+iΩ(t) ⟨J | cos θ |J − 1⟩α(e)
J−1(t)

α̇
(e)
J (t) =

[
i∆− i

~
BeJ(J + 1)

]
α
(e)
J (t) + iΩ∗(t) ⟨J | cos θ |J + 1⟩α(g)

J+1(t)+

+iΩ∗(t) ⟨J | cos θ |J − 1⟩α(g)
J−1(t)

(8.13)
where

⟨J | cos θ |J + 1⟩ =

√
(J + 1)2

(2J + 3) (2J + 1)

⟨J | cos θ |J − 1⟩ =

√
J2

(2J + 1) (2J − 1)

(8.14)

8.2 Population Transfer: Optimization

We consider here the problem of population transfer within the rotational
framework as an optimization problem, subject to the numerical modeling
for diatomic molecules presented earlier. The objective to be met is de�ned
as the probability to populate a speci�c target rotational level, given the
initial ground state:

J := Pi−→f , |i⟩ = |gJ = 0⟩ , |f⟩ = |gJtarget⟩ , (8.15)
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where possibly Jtarget ∈ {0, 2, 4, 6, 8, . . . , Nrot}. In our calculations, the yield

subject to maximization is simply
∣∣∣α(g)

Jtarget
(T )
∣∣∣2, in terms of the notation

introduced earlier. Also, by de�nition, M = 0.
We consider Nrot = 20, where this expansion was con�rmed to give con-

verged results in the present calculations. The molecule under investigation
has a rotational constant of Brot = Bg = Be = 5cm−1.

Solving the de�ning di�erential equations for the population transfer
problem (Eq. 8.13) is obviously computationally expensive. In practice, given
an electric �eld, a single evaluation of the resulting wavepacket has the dura-
tion of approximately 5s on a single P4-HT 2.6GHz processor. We are thus
interested in optimization procedures with as minimal function evaluations
as possible.

8.2.1 Experimental Procedure

There are several de�ning parameters in the present calculations. Some of
them are critical, as they pose direct constraints on the quantum system
at hand, and practically determine its controllability. In our model, such
parameters are the peak Rabi frequency, which plays the equivalent role
of the laser intensity, as well as the pulse duration. Setting these two pa-
rameters de�nes the simulated physical system. Given the target rotational
level, it is then possible to aim at steering the system toward it. Thus, we
choose to consider the population transfer as a function of these two de�n-
ing parameters, where the focus will be on speci�c values that re�ect best
state-of-the-art laboratory experiments.

From the algorithmic perspective, we choose to restrict our calculations to
the DR2 and the CMA algorithms, which performed best on the Two-Photon
Process problems. They both employ small populations, and consider �rst-
order and second-order information, respectively.

Preliminary Runs Preliminary calculations revealed a clear picture, which
could have been predicted by intuition1. These preliminary calculations were
consisted of 10 runs per algorithm on Jtarget = {0, 2, 4, 6, 8} with the follow-
ing peak Rabi frequencies:

Ωge = {40, 60, 80, . . . , 160, 180} × 1012s−1.

Given a Rabi frequency of Ωge = 160× 1012s−1, the quantum system could
easily be steered into perfect control for low J values (J = {0, 2, 4}). This
task became infeasible for higher J values with the given Rabi frequency.
However, when the latter was increased, e.g., Ωge = 180×1012s−1, it became

1As much as intuition exists for Quantum Mechanics; "My batting average on intuition
is close to zero in quantum control, and I wear that zero average proudly" (Herschel Rabitz,
private communications).
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feasible. Hence, there is a trend of controllability as a function of the laser
intensity, especially for the higher rotational levels. As far as the algorithmic
performance was concerned, the DR2 and the CMA performed equally well
on the given systems. Most importantly, there was never a situation where
the DR2 obtained controllability on a given system on which the CMA did
not, nor vice versa.

We consider the case of a target rotational level of J = 4 as an inter-
esting case-study. This is due to the fact that it allows perfect control at
Ωge = 160 × 1012s−1, but yet it is a challenging task for the optimization
routines. Also, the e�ect of decreasing the peak Rabi frequency while losing
controllability can be observed relatively easily.

8.2.2 Numerical Observation: J = 0 −→ J = 4

We applied the DR2 algorithm to the optimization of the population transfer
problem from J = 0 to J = 4. These optimizations were performed for three
values of the peak Rabi frequency:

Ωge =
{
80× 1012s−1, 120× 1012s−1, 160× 1012s−1

}
.

All calculations were carried out with 80 runs, limited to 10, 000 func-
tion evaluations per run. These calculations obtained qualitatively di�er-
ent results for the three intensities considered. For Ωge = 80 × 1012s−1

the optimizations were unable to accomplish the transfer from J = 0 to
J = 4 with unit e�ciency. The best e�ciency obtained was ≈ 32%. For
Ωge = 120 × 1012s−1 and for Ωge = 160 × 1012s−1 the transfer e�ciency
approached 100% in most of the calculations.

Aiming at comparing the results of individual optimization runs, we de-
�ne a correlation coe�cient that compares pulse-shapes attained in two runs
i and j, by means of their �eld intensities:

ci,j =
max∆t {

∑
t Ii(t)Ij(t+∆t)}[√∑

t I
2
i (t)

√∑
t I

2
j (t)

] (8.16)

where Ii(t) and Ij(t) are the �eld intensities of the pulses obtained in runs
i and j, respectively. Taking the maximum as a function of ∆t is due to
the fact that pulse-shapes attained by the optimization may be shifted with
respect to each other. The sums are over the discrete time steps, as conducted
in the numerical calculation. Eq. 8.16 thus yields ci,i = 1, and ci,j = 0 if
pulses i and j do not overlap at all.

Case 1: Ωge = 80×1012s−1 Figure A.4 presents the correlation coe�cient
for the 80 optimization runs of the Ωge = 80 × 1012s−1 test-case. The runs
are sorted based on their success-rate (see top panel in the plot). From Fig-
ure A.4 we conclude that all solutions that approach the maximum observed
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population are highly correlated. Upon examination of the actual calcula-
tions, it is observed that all of these solutions are very close to a single FTL
pulse. Deviations from the FTL pulse do not only lead to a drop in the
correlation coe�cient, but also in the population transfer yield.

Case 2: Ωge = 120 × 1012s−1 In Figure A.5 the correlation coe�cient
is plotted for the 80 optimization runs that were performed for the Ωge =
120×1012s−1 test-case. Here, the laser pulse energy was su�cient to transfer
population from J = 0 to J = 4 with near-unit e�ciency. The best solutions,
which have a population transfer e�ciency of 99.982% and 99.98%, were only
weakly correlated to each other, and were only weakly correlated to most of
the other solutions. Speci�cally, there were only 9 solutions among the set of
80 that share a correlation coe�cient larger than 0.95 with the best solution
(indexed as 1). Many of the remaining solutions are strongly correlated with
the 3rd-best solution, which has a population transfer yield of 99.975%: As
many as 41 solutions shared a correlation coe�cient larger than 0.95 with
that solution (indexed as 3). While the three good solutions 1, 2, and 3 are
rather di�erent from each other, they contain most of the dominant features
of the identi�ed optimized solutions.

Solutions 1-3 are presented in Figure 8.1. Despite their di�erent charac-
teristics, all three solutions in Figure 8.1 are dominated by a series of peaks
with a separation of 4.79 × 10−13s. This corresponds to the beating period
of a coherent superposition of J = 2 and J = 4 (∆E = 14B). Additional
good solutions likely exist, possibly continuously connected on a common
level set, and further special numerical methods are needed to explore this
possibility, such as the D-MORPH algorithm (Section 6.1.3).

Case 3: Ωge = 160×1012s−1 Figure A.6 presents the correlation coe�cient
for 80 optimization runs of the Ωge = 160 × 1012s−1 test-case. While the
degree of population transfer is very high in almost all the runs at this inten-
sity, the correlation between the various solutions is very limited. Clearly, a
large number of solutions that transfer the population with unit e�ciency co-
exist, with very little commonality between them. Indeed, inspection of the
actual pulse shapes obtained in these runs reveals highly complicated pulses,
with few regular features, and an absence of the peak arising from coherence
between J = 2 and J = 4 in the Fourier transform power spectrum.

8.2.3 Intermediate Discussion

Upon increasing the intensity from Ωge = 80×1012s−1 to Ωge = 160×1012s−1

we �nd that population transfer is accomplished with an ever increasing
number of distinguishable solutions.

The results presented here can be viewed as additional experimental cor-
roboration to the results outlined in Corollary 6.1.2, where it was concluded
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Figure 8.1: Comparison of the 3 best-performing pulse shapes that were
obtained in 80 runs of the DR2 for the population transfer problem of J =
0 −→ J = 4 at Ωge = 120× 1012s−1. All solutions consist of trains of pulses
with a spacing of 4.79 × 10−13s, which corresponds to the beating period
between J = 2 and J = 4.
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that controllable quantum systems with no constraints placed on the con-
trols only have extrema that correspond to perfect control, or to no control
at all; Additional analysis revealed the fundamental nature of control level
sets (see Corollary 6.1.3) at the absolute extrema and at sub-optimal control
yields.

A striking aspect of the results is the evidence that the number
of independent solutions produced by an optimization seems to
critically depend on the di�culty of the problem. In the current
population transfer calculations we observed that at low intensity,
where reaching the target is a hard problem with less than perfect
yield, the trials invariably converge onto one and the same solu-
tion, whereas at higher intensity, where this represents an easier
problem, a wide variety of solutions are encountered.

8.3 Application of Niching

Motivation: Landscape Richness The numerical observation of the
previous section, as summarized in the intermediate discussion, provides us
with the strong motivation to apply niching to the problem. The revealed
richness of the landscape, as predicted by OCT theorems but assessed here
on our constrained OCE/OCT-combined landscape, is considered by us as a
welcoming invitation for the niching framework.

8.3.1 Preliminary: Distance Measure

Upon applying niching to Quantum Control landscapes, we are required to
de�ne an appropriate distance metric. Although Eq. 8.16 already provides
us with a possible diversity measure, we would like to select a distance metric
which is as close as possible to the decision parameters, i.e., the control phase
space. We shall then apply Eq. 8.16 for assessing the diversity of the attained
solutions.

When considering the decision frequency space, one should keep in mind
that the attained �eld calculations are invariant under the following trans-
formations:

• ϕ̃(ω) = ϕ(ω) + ϕ0: This would add a multiplication constant after the
Fourier transform is calculated.

• ϕ̃(ω) = ϕ(ω) + c · ω: This would simply shift the entire pulse with
respect to the time origin and therefore has no observable e�ect.

These invariance properties must be taken into account when de�ning a
distance measure between two individuals in the decision space, ϕi(ω) and
ϕj(ω), as it is clear that using the straightforward approach of the Euclidean
distance would not accomplish the desired goal: Due to the fact that ϕ(ω)
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is invariant under the speci�ed transformations, calculating the distance be-
tween two feasible solutions, ϕi(ω) and ϕj(ω), would not guarantee that the
derived pulse-shapes, Ii(t) and Ij(t), respectively, would have di�erent pro-
�les. Thus, a new distance measure that would remove this degeneracy is
much needed here.

Our proposed solution is to apply the distance metric in the second-
derivative space of ϕ(ω), where the invariance properties vanish. Explic-
itly, given that the discretization is to n function values, the distance between
ϕi(ω), ϕj(ω) is de�ned as follows:

di,j =

√√√√ n∑
k=1

((
∂2ϕi(ω)

∂ω2

)
k

−
(
∂2ϕj(ω)

∂ω2

)
k

)2

(8.17)

8.3.2 Numerical Observation

We consider here three niching strategies:

1. The (1, λ)-DR2 - as a representative of �rst-order information ap-
proach.

2. The (1, λ)-CMA - as a representative of second-order information ap-
proach.

3. The (1 + λ)-CMA - as a representative of elitist strategies.

We conduct 10 runs per method, searching for q = 3 niches, subject to
phase-function parameterization of n = 80. Each run was limited to 10, 000
function evaluations per niche.

The results of our calculations are discussed at several levels.

Niche-Radius

Numerically, the derivative is simply implemented by means of the MATLAB
command diff. Thus, after the double-application of diff to the original
phase-vector of dimension n = 80, the modi�ed vector y⃗ is reduced to di-
mension n∗ = n− 2 = 78. Given the original upper and lower bound values
of the decision parameters,

xk,min = 0, xk,max = +2π k = 1..80,

the �rst application of diff will make new bound values of

x̃k,min = −2π, x̃k,max = +2π k = 1..79,

and the second application will make it

yk,min = −4π, yk,max = +4π k = 1..78.
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Table 8.1: Three niches obtained in 10 runs � averaged yield values (in
parentheses - best value attained) � for the three employed niching strategies.

Ranked-Niches DR2 CMA CMA+

Best niche 0.9999 (0.9999) 0.9892 (0.9923) 0.9992 (0.9997)

2nd-best niche 0.9745 (0.9910) 0.7391 (0.9797) 0.9982 (0.9995)

3rd-best niche 0.2293 (0.2984) 0.0951 (0.1619) 0.9780 (0.9972)

When plugging this into Eq. 3.5, we obtain:

ρ =

1
2

√
78 · (8π)2

3
1
78

≈ 110 (8.18)

The initial setting of the niche-radius, ρ = 110, failed to obtain satisfying
performance. The DR2 as well as the CMA-comma routines did not succeed
in obtaining good solutions. The CMA-plus, however, managed to locate
good solutions for the �rst niche only; the second and third niches were not
populated by good solutions. Upon dividing the niche radius by half, i.e.,
ρ̃ = 55, we started to obtain satisfying results, as will be reported here. We
shall o�er an explanation for this observation in the discussion to follow in
the end of this section.

Success-Rate

The averaged as well as maximally attained yield values of the three methods,
for the three obtained niches, are presented in Table 8.1. It can be concluded
that niching with the CMA-plus kernel typically obtains the best three niches
in terms of the population-transfer yield. Niching with the DR2 as well as
the CMA-comma kernels always obtain a �rst niche of high quality. The DR2
typically obtains a very good second niche, but fails in obtaining a third-best
niche of high quality. The CMA-comma, on the other hand, typically fails
to obtain second- and third-best niches of satisfying quality.

Niches Cross-Correlation

In order to verify that the resulting niches indeed represent su�ciently dif-
ferent pulse shapes, we calculated the cross-correlation coe�cients for the
obtained pulse-shapes, as de�ned in Eq. 8.16. The results of these calcula-
tions are presented in Table 8.2. In addition, we can state that a correlation
value larger than 0.8 was never observed. Based on these �ndings, we can
conclude that the pulse-shapes of the di�erent niches are weakly correlated
to one another, as originally desired.



8.3. Application of Niching 149

Table 8.2: Niches correlation for the niches obtained in 10 runs � averaged
cross-correlation values, as de�ned in Eq. 8.16 � for the three employed
niching strategies.

Niches Correlation DR2 CMA CMA+

c1,2 0.6583 0.7244 0.6883

c1,3 0.6982 0.6835 0.6993

c2,3 0.6471 0.7181 0.7154

Discussion

We would like to summarize our numerical observation of the applied niching
algorithms to the population transfer problem within the rotational frame-
work. We have identi�ed a degeneracy in the default diversity-measure be-
tween candidate solutions, due to some invariance properties of the Fourier
transform in the decision space. We o�ered a problem-speci�c diversity mea-
sure to overcome it. Upon its employment, the latter was shown to be suc-
cessful, as the obtained pulse-shapes di�ered considerably. This was also
assessed by means of the calculation of the correlation coe�cients between
the pulse-shapes, which were observed to be low.

The original theoretical calculation of the niche radius was not observed
to be successful at the practical level. The results reported here were ob-
tained only after introducing a factor of 0.5 to the original value. We believe
that this suggests a landscape with a limited regime of good solutions. Essen-
tially, following the argumentation given in Section 3.5.3, which considered
the niche formation process subject to a �xed niche radius as a constrained
optimization problem, we argue that introducing a large niche radius would
pose a highly constrained problem. This should remind us that the proposed
formula for the niche radius is merely an approximation, and moreover, we
should keep in mind that the niche radius is a sensitive yet crucial component
of this mechanism.

In terms of algorithmic performance, the CMA-plus performed best when
obtaining typically three niches of high-quality pulses. The DR2 succeeded
in obtaining a �rst and second good niches, but failed in the third niche.
The CMA-comma was observed to typically obtain only a single niche of a
high-quality pulse.

We believe that the observed incompetence of the niching framework with
the comma-strategy kernels to obtain good results in the secondary niches is
due to the landscape properties in general, and the limited regimes of high-
quality basins of attraction. Furthermore, we would like to speculate that
the failure of the originally employed niche-radius is linked to the failure of
the comma-strategies in obtaining good secondary optima.





I can safely say that nobody understands Quantum Mechanics.

Richard Feynman

Chapter 9

Dynamic Molecular Alignment

The Quantum Control application to dynamic molecular alignment [153, 154]
is of considerable interest because of its many practical consequences. For
instance, many chemical and physical processes, ranging from bimolecular
reactions [155] to high harmonic generation [156], are directly in�uenced by
the angular distribution of the molecular sample. Furthermore, in many fun-
damental molecular dissociation or ionization experiments the interpretation
of the collected data will become more e�cient if the molecules are aligned
with respect to a certain axis. Hence, techniques to generate molecular
alignment are needed in practice.

Achieving molecular alignment can be classi�ed into two possible modes:

1. Pendular State When the envelope of the �eld changes slowly com-
pared to the timescale of molecular rotation, typically in the picosecond
regime, each rotational state of the initial Boltzmann distribution is
transformed adiabatically into a pendular state. The drawback of this
approach is that any alignment produced while the �eld is turned on
will vanish once it is turned o� again. Thus, such experiments cannot
be carried out subject to �eld-free conditions.

2. Impulsive Alignment Here, the duration of the applied pulses is
much shorter than a rotational period [157]. A wavepacket of rotational
states is constructed such that �eld-free alignment can be considerably
attained.

Both modes aim at constructing a superposition of as many angular momen-
tum eigenstates as possible. Due to the uncertainty principle, a broad dis-
tribution in angular momentum corresponds to a narrow distribution of the
angular position. However, it is important to note that both the amplitudes
and the relative phases of the composite rotational states have to be under
control in order to achieve alignment. This requirement is ful�lled for the
pendular state case, since it is an eigenstate of the combined molecule-�eld

151
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Hamiltonian. However, in the general case, a randomly phased superposi-
tion of rotational states will not interfere favorably in attaining molecular
alignment.

For the impulsive case, the evolution of the total wavefunction (after the
electric �eld is turned o�) repeats with the revival time

Trev =
1

2Brotc
(9.1)

where Brot is the rotational constant of the molecule and c is the speed of
light. Partial revivals can be observed at Trev/2 and, possibly, at Trev/4,
when one-half or one-quarter, respectively, of the populated rotational levels
have undergone an identical number of rotations. Shaped femtosecond laser
pulses that lead to a high degree of alignment manage to maximize the
number of rotational states that are in phase at these times. However, they
have to ful�ll an additional requirement: Low �eld intensities should be
applied in order to avoid a scenario in which the molecules are ionized.
This aspect also plays a role in keeping the numerical modeling consistent
in describing the molecule as a rigid rotator, as discussed in Chapter 8.
Therefore, one would like to achieve high alignment while keeping the peak
laser intensity as low as possible.

On that note, recent publications have focused on �nding pulse shapes
other than the FTL pulse that create a high degree of alignment. Leibscher
el al. [158, 159] have theoretically shown that in the nonperturbative regime
a train of pulses lead to better alignment than a single FTL pulse. For
asymmetric molecules, orientation has been found to be optimized by a
sequence of kicks as well [160].

Such pulse sequences can be easily constructed and also optimized with
respect to the relatively small number of their control parameters. There-
fore, they provide an attractive starting point for more complex optimization
schemes, where the electric �eld is de�ned by a considerably larger number
of control parameters. The task of obtaining high-quality solutions in this
high-dimensional search space is nontrivial, already when considering only
the ground state in the initial distribution. For �nite temperatures, the
alignment optimization has to be performed simultaneously for a set of ini-
tial rotational states, which, together with the large number of electric �eld
control parameters poses a challenging optimization problem.

9.1 Numerical Modeling

The numerical modeling of the rotational framework, as presented in Chapter
8, is adopted here fully. The remaining task is the de�nition of the alignment
observable.
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The alignment calculation uses the following components in our basis:

⟨JM | cos2 θ |JM⟩ = 1

3
+

2

3

(
J(J + 1)− 3M2

(2J + 3)(2J − 1)

)
⟨JM | cos2 θ |J + 2 M⟩ =

1

2J + 3

√
(J +M + 2)(J +M + 1)(J −M + 2)(J −M + 1)

(2J + 5)(2J + 1)

⟨JM | cos2 θ |J − 2 M⟩ = 1

2J − 1

√
(J +M)(J +M − 1)(J −M)(J −M − 1)

(2J + 1)(2J − 3)

(9.2)
We consider a thermal ensemble of diatomic molecules undergoing irradiation
at a �nite temperature. The latter is set to T = 100 K, and implemented by
means of a Boltzmann averaging which practically corresponds to the density
matrix ρ. The molecule under investigation has a rotational constant of
Brot = Bg = Be = 5cm−1. We set the Rabi peak frequency to Ωge =
180× 1012s−1.

For the sake of attaining high molecular alignment while keeping the peak
�eld intensity as low as possible, due to the rigid rotator approximation, we
introduce a constraint to the optimization procedure, by means of a penalty
term to pulses that are too intense. It explicitly reads

Ip =

∫
E2(t)Θ(E2(t)− Ithr) dt (9.3)

with Θ(x) as the Heaviside step function.
Thus, the �tness function assigned to a candidate pulse shape is de�ned

by
F = maxE(t)

⟨
cos2(θ)

⟩
− βIp. (9.4)

By choosing β large enough, Ithr can be used to e�ectively operate the
evolutionary search only on a subset of pulses whose maximum peak �eld
intensity approaches the threshold intensity from below. We have typically
used β = 1; Unless otherwise speci�ed, Ithr was set to Ithr = 0.36 · IFTL.

Figure 9.1 provides an illustrative overview of the numerical process.

9.1.1 Numerical Simulations: Technical Details

We hereby provide some information about the experimental setup of the
dynamic alignment numerical simulation:

• In the absence of a laser �eld, a random phase should yield on average
an alignment value of 0.333, due to the isotropic 3D space. In the
presence of a laser �eld a random phase typically obtains alignment
values around 0.4.
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Figure 9.1: An overview of the numerical process. The control function is the
phase (circled, top left), the amplitude function is �xed and approximated
by a Gaussian (bottom left). The shaping process (Eq. 6.29) generates the
electric �eld, E(t) (center). The "Schrödinger Box" of the alignment ob-
servable represents the numerical calculation of the interaction between the
electric �eld with the molecules, based on the quantum dynamics numerical
modeling. The revival structure (right) is the observed simulated behavior
of the molecules, upon which the yield value is based.

• The penalty term, as introduced in Eq. 9.3 and in Eq. 9.4, can yield
�tness values below the value of 0.4. The probability of a randomly
generated pulse, with no speci�c parameterization, to get penalized is
extremely low.

• Every �tness evaluation call requires approximately 35s on a single
P4-HT 2.6GHz processor.

• Due to the heavy computational cost of a single simulator evaluation,
we are limited in granting function evaluations. We are thus encour-
aged to employ optimization routines with minimal settings. Moreover,
we shall apply experiments with a low number of repetitions.

9.2 Experimental Procedure

In order to preliminarily assess the performance of the algorithms on the
given problem, we have conducted 10 independent runs for each of the de-
randomized ES comma-variants with the goal of optimizing the alignment of
a sample of generic diatomic molecules undergoing irradiation by a shaped
femtosecond laser. We limit each run to 10, 000 function evaluations, due to
the computational cost of the simulator.
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Algorithm DR1 DR2 DR3 CMA

AVG-Fitness 0.6399 0.6789 0.6534 0.6261

Table 9.1: Dynamic molecular alignment: Attained �tness values, averaged
over 10 runs, for the DES comma variants.

9.2.1 First Numerical Results: Comparison of the Algorithms

Table 9.1 summarizes the numerical results of the runs - the averaged �tness
value obtained by each optimization routine. Based on our experience with
the problem and the algorithms, the yield di�erences of Table 9.1 are be-
lieved to be signi�cant. Moreover, due to the limited number of simulations
we do not provide further statistical analysis of the results.
Roughly speaking, the algorithms were observed to perform equally well,

with the exception of the DR2 algorithm that managed to obtain a signif-
icantly better optimum than the others. While the DR3 algorithm showed
the fastest initial �tness increase, it seemed to get stuck in a sub-optimal
local trap after ≈ 2, 000 function evaluations. We have found this behavior
to be typical for the DR3 algorithm.
The ranking of the algorithms was qualitatively similar for a number of align-
ment optimization runs employing di�erent parameter settings.
Figure 9.2 presents the best pulse-shape solution attained, as obtained by
the DR2 routine.

9.2.2 The Complete-Basis-Functions Parameterization

In this section we present a new method for learning a function, based on
a representation transformation, which can also be referred to as param-

eterization. The so-called Complete-Basis-Functions Parameterization was
originally derived for the sake of learning the control function of the dynamic
alignment problem, i.e. the phase ϕ(ω), but is a general method for learn-
ing a generic n-variable function. It can reduce the dimensionality of the
search space and possibly boost the convergence speed, respectively, as will
be explained in detail.

Appendix B provides the reader with the mathematical back-
ground on complete-basis functions, and presents the speci�c func-
tions that are considered in our study. For the sake of consistency and
reading clarity, we specify here our notation for a spanned target function
f (x):

f (x) =

Kmax∑
k=1

ckξk (x)

with ck as the expansion coe�cients, and {ξk (x)}∞k=1 as the the set of
complete-basis functions.
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Figure 9.2: Best solution attained by the DR2. Thick line: alignment; thin
line: intensity pro�le of the optimized laser pulse. The solution consists of
three main peaks (see labels).

Preliminary: Expanding a Known Function As we will demonstrate
here, �nding the expansion of a known function by means of a given set of
complete-basis-functions, i.e., �nding the coe�cients of the functions in this
basis, is an easy task for a simple evolutionary algorithm, and in particular
for the standard-ES. For simplicity, and without loss of generality, let us
assume that the task is to approximate a one-variable function using the
Fourier series:

f(x) =
1

2
a0 +

∞∑
k=1

ak cos

(
2πk

L
· x
)
+

∞∑
k=1

bk sin

(
2πk

L
· x
)

This task can be generalized to functions of higher dimensions, and by us-
ing other expansions of complete-basis functions. Following the notation
of Appendix B, consider a �nite number of the expansion coe�cients of
the cosine and sine functions, {ak}Ka

k=0, {bk}
Kb
k=1, as the decision parameters

to be optimized by the evolutionary search. As a preliminary task in this
study, we found that the standard-ES (Schwefel approach) converged easily
and quickly to the correct coe�cients. This elementary �tting problem was
simply de�ned by means of the square-error minimization: The �tness, sub-
ject to minimization, was de�ned respectively as the root-mean-square error
function between the original function and its evolving expansion.

Figure 9.3 presents the outcome of learning the triangle function with
the standard-ES, using only the �rst 20 frequencies (Kmax = Ka+Kb = 40)
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Figure 9.3: Learning the triangle function by means of the �rst 20 Fourier

frequencies. The plot shows the original triangle function and its Fourier
approximation.

of a Fourier series as building blocks for a given function discretization of
N = 100.

Proposed Method: Learning an Unknown Function The idea of
spanning a function using a set of complete basis-functions can also be ap-
plied for the task of learning an unknown function, represented byN function
values, as in our quantum control alignment problem. The inspiration for this
method was the initial intuition to the alignment problem, which suggested
that the control function should be periodic. Motivated by this intuition,
we started to run simulations in which an ES was aiming at learning ϕ(ω)
using the harmonic functions as building blocks. Rather than learning the
interpolated values of the control function, the coe�cients of the harmonics
(Fourier components) were optimized. Following the success of those exper-
iments, we extended the method to other sets of complete basis functions,
and in particular to the sets of functions which are introduced in Appendix
B: The Legendre Polynomials, the Bessel Functions, the Hermite Polynomi-
als, and the Chebyshev polynomials.
Assuming that the desired discretization is up to a resolution of N points
in the interval, we limit the number of elements in the expansion series to
Kmax, where preferably Kmax ≪ N . By that we can achieve a dramatic di-
mensionality reduction of the search space, aiming to boost the convergence
speed. The idea is then to apply an evolutionary search to the n = Kmax
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coe�cients of the expansion functions, where a simple transformation is ap-
plied for every �tness evaluation. In practice, the required time for additional
computation of this transformation is negligible with respect to the objective
function evaluation, in most real-world problems.

An ES employing a Fourier auxiliary function has been proposed in the
past, known as the FES method [161]. The FES aims at approximating
the �tness landscape, and particularly its small attraction basins, by means
of the Fourier series. However, the careful reader should notice that our
method is based on a di�erent principle. It uses complete-basis functions
as a transformation of the decision parameters themselves, rather than the
�tness landscape, which is left untouched. It strongly relies on the fact that
these decision parameters represent a continuous function - and this function
is due to be approximated.

Preliminary Calculations

Quadratic Phase Functions: The α-Test Since we are about to inves-
tigate representations of low-order polynomials, we would �rst like to address
the question whether there exists a trivial extremum which would become a
local trap for such phase functions. Hence, we calculated the �tness of con-
structed quadratic phase functions, centered around the central frequency.
Explicitly, we considered the following family of constructed phases:

ϕα(ω) = α · (ω − ωcentral)
2, (9.5)

where the continuous parameter α is scanned systematically in the interval
[0, 15]. Note that these phases are constructed over n = 80 function values,
and given as input to the dynamic alignment simulator as before.

The results of this so-called α-test are presented in Figure 9.4.
As can be clearly seen in the given plot, most of the quadratic phase

functions attain extremely low �tness values, due to large penalty terms, and
they never exceed the �tness value of 0.45. This eliminates the existence of
a trivial quadratic solution for the problem.

The Initial States Density Test We set the number of terms in each
expansion to Kmax = 40. The following preliminary experiment is meant to
compare the natural initial quality of the di�erent parameterizations with
respect to the alignment problem. We applied a so-called initial states den-

sity test, a statistical �tness measurement of the initialized phase functions
in the di�erent parameterizations. For each parameterization in use, i.e.,
the direct/plain 80-dimensional random phase vector, or the random 40-
dimensional coe�cient vector for the various polynomials in use, we initial-
ized 1, 000 phase functions and calculated their mean �tness and standard
deviation. The numerical results are visualized as histograms in Figures 9.5-
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Figure 9.4: The α-test: The �tness of quadratic phase functions, centered
around the central frequency, as de�ned in Eq. 9.5.

Table 9.2: Parameterizations: Averaged Performance

Routine Direct Fourier Legendre
Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval

(1,10)-DR2 0.6789 2325 0.4494 N.A. 0.6384 629

(1,10)-CMA 0.4676 N.A. 0.4542 N.A. 0.6409 515.1

(µ, λ)-CMA 0.6261 4962.5 0.6171 4475.8 0.6466 194.5

Routine Bessel Hermite Chebyshev
Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval

(1,10)-DR2 0.6299 1390 0.5944 5610 0.4843 N.A.

(1,10)-CMA 0.6229 2212.9 0.6755 271 0.4979 N.A.

(µ, λ)-CMA 0.6232 2719.5 0.6843 118 0.6225 3770.8

9.10, providing the �tness distributions of the various random initializations.
See further discussion below.

Parameterizations: Numerical Results

In this section we present the numerical results for optimizing the dynamic
alignment problem with the di�erent parameterizations - the direct/plain pa-
rameterization versus the polynomial-based parameterizations with Kmax =
40 terms. Our runs were based on the following algorithmic kernels:

1. (1, 10)-DR2
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Fitness

Figure 9.5: Initial states density test
for direct parameterization.

Fitness

Figure 9.6: Initial states density test
for Fourier parameterization.

Fitness

Figure 9.7: Initial states density test
for Legendre parameterization.

Fitness

Figure 9.8: Initial states density test
for Bessel parameterization.

Fitness

Figure 9.9: Initial states density test
for Hermite parameterization.

Fitness

Figure 9.10: Initial states density test
for Chebyshev parameterization.
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Table 9.3: Parameterizations: Summary of Best Results

Parameterization Best Fitness 0.6 Eval Routine Initial States Density

Direct-Param 0.6899 2310 (1,10)-DR2 0.4026± 0.018

Fourier 0.6526 1411 (7,15)-CMA 0.4110± 0.019

Legendre 0.6487 106 (7,15)-CMA 0.3122± 0.075

Bessel 0.6457 61 (7,15)-CMA 0.2218± 0.077

Hermite 0.6866 31 (7,15)-CMA 0.4558± 0.048

Chebyshev 0.6490 1051 (7,15)-CMA 0.4226± 0.023

2. (1, 10)-CMA

3. (µW , λ)-CMA: Following the recommended settings (Eq. 1.47): (7, 15)
for n = 40, versus (8, 17) for n = 80.

The runs were limited to 10, 000 function evaluations. We conducted 10 runs
per method.
We consider the performance criteria of the various methods as the following:

• The mean �tness values per method over the 10 runs.

• The averaged number of evaluations per method until the �tness value
of 0.6 was reached during the runs. We consider the yield value of 0.6
as the lower bound of the regime of good solutions.

• The results of the initial states density test, as was introduced ear-
lier: The averaged initial �tness values per method, with the standard
deviation.

We provide a table of results, which consists of the numerical values of
the speci�ed performance criteria per method. It is given as Table 9.2. Table
9.3 summarizes the best results obtained per parameterization.

Analysis and Discussion

An important result that should be pointed out is that all the runs in the var-
ious parameterizations have converged into a highly �t phase function with
at least one optimization routine, i.e., all the given complete-basis functions
are capable of spanning a good phase function with Kmax = 40 terms.

Furthermore, we would like to analyze shortly the experimental results
of the various parameterizations with respect to the dynamic alignment op-
timization, as presented in Tables 9.2 and 9.3:

1. Initial State The Hermite parameterization has clearly the most nat-
ural initial representation for the phase function for the given prob-
lem, among the various cases, as re�ected from the initial states density
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test results (Figures 9.5-9.10 and Table 9.3). Note that the Legendre
as well as the Bessel parameterizations have low initial �tness values,
even below the direct parameterization, due to the penalty e�ect. It
should be stressed that the standard deviations of the di�erent �tness
distributions are reasonably low.

2. Fitness Values The Hermite parameterization obtained �tness val-
ues as high as the direct parameterization method, though by means
of a di�erent algorithm, as will be discussed shortly. As far as we
know, the attained yield values in the regime of ≈ 0.69 are the high-
est cosine-squared alignment values which were ever attained for this
particular con�guration of the problem. Hence, from the optimiza-
tion perspective, the proposed parameterization does not hamper the
feasibility to obtain the maximally-attained yield within the limit of
function evaluations.

3. DR2 vs. CMA There is a clear trend regarding the two algorith-
mic kernels. The DR2 obtained the best results for the direct pa-
rameterization, but obviously failed to deliver reasonable results for
the polynomial-based parameterizations. In most cases, the DR2 does
not even converge. The (7, 15)-CMA, on the other hand, performed
very well with the various polynomial-based parameterizations, and
attained �ne results also for the direct parameterization. The (1, 10)-
CMA is clearly inferior with respect to its rank-µ weighted-recombined
sibling. Our proposed explanation for this trend is the strong correla-
tions between the polynomials' coe�cients, which make the covariance
matrix an essential component for successful optimization. On the
other hand, it seems that the covariance matrix is not an essential
component for the direct parameterization, and may even introduce a
barrier, to some degree, to the global search.

We would like to link this to the conclusions drawn for the QC land-
scapes of Two-Photon Processes in Chapter 7, where QC landscape
analysis stating that �rst-order information is su�cient for optimiz-
ing QC landscapes was experimentally corroborated. The fact that
the DR2 algorithm performs so well on the current dynamic alignment
landscape, which is a combined OCT/OCE landscape, could be con-
sidered as an additional corroboration to this QC landscape analysis.

We shall further explore the performance of the DR2 versus CMA-ES
with respect to the direct versus Hermite parameterizations in Section
9.3.

4. Boosting Convergence Speed An immediate conclusion from both
tables is that the proposed method achieved a signi�cant boost of the
convergence speed for all the di�erent polynomial-based parameteri-
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Figure 9.11: The speeding-up e�ect: Typical convergence pro�les of the
(µW , λ) CMA-ES for the Hermite versus the direct parameterizations.

zations, in comparison to the direct parameterization. The Hermite

parameterization with the (7, 15)-CMA is clearly the fastest routine,
and it outperformed the other routines by far. It should be noted that
the Legendre as well as the Bessel parameterizations, which have the
lowest initial yield values, manage to compensate for that and reach
the regime of good solutions (yield > 0.6) rather quickly.

Typical convergence pro�les for Hermite versus direct parameteriza-
tions are plotted in Figure 9.11.

5. Physics Interpretation Aiming at gaining physics insights into the
nature of highly-�t phase functions with respect to the alignment prob-
lem, we examined the nature of good solutions in the di�erent pa-
rameterizations. The idea was to calculate the distributions of the
coe�cients, and try to identify dominance of certain components (fre-
quencies in the Fourier case). Unfortunately, such dominance could
not be identi�ed within the results. The set of attained optimal phases
reveals high complexity, which could not be tackled. This provides
us with the motivation to explore a simpler variant of the alignment
problem in Section 9.3.
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Figure 9.12: Optimized pulses and alignment for Ithr = 0.2 · IFTL, Ithr =
0.25 · IFTL and Ithr = 0.3 · IFTL. Figure courtesy of Christian Siedschlag
[162].

Intensity [IFTL] 0.2 0.25 0.3 0.36⟨
cos2(θ)

⟩
0.662 0.673 0.6734 0.689

Table 9.4: Best
⟨
cos2(θ)

⟩
values obtained with the DR2 algorithm over �ve

runs for di�erent values of Ithr [162].

9.2.3 Further Investigation

We would like to review here brie�y additional calculations for this alignment
problem, which were carried out by Siedschlag and Vrakking (see, e.g., [162]).

Penalty Strength By decreasing Ithr, the search algorithm was shown
to look for e�ective pulses with less available peak intensity. The numerical
results of additional optimization runs, carried out by the DR2 algorithm, for
Ithr = 0.2·IFTL, Ithr = 0.25·IFTL and Ithr = 0.3·IFTL are presented in Table
9.4. Overall, the evolutionary search was able to make up for the smaller
peak intensities by redistributing the �uence in a clever way, so to speak. The
optimized pulse-shapes for the three lower threshold intensities are presented
in Figure 9.12. The three solutions are observed to be remarkably similar.

Constructed Pulse Trains Siedschlag and Vrakking [162] also treated
the question whether a simple train of pulses that is constructed by an ap-
propriately designed phase function yields results that are comparable to
those achieved by the evolutionary approach. In particular, the question ad-
dressed trains of pulses, which are generated by oscillatory phase functions.
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Figure 9.13: A cut through the contourplot of Figure A.7 for A = 2.26,
for which the largest alignment

(⟨
cos2(θ)

⟩
= 0.589

)
in the two-parameter

approach under the condition I < 0.36 · IFTL was achieved [162]. Figure
courtesy of Christian Siedschlag.

Explicitly, the following family of phases was considered:

ϕosc(ω) = A · sin(ω∆+ α) (9.6)

The two relevant parameters, A and∆, were scanned in a search for the pulse
that would produce the best alignment; Figure A.7 presents the outcome
of that scan. The magnitude of A controls the distribution of the available
intensity over the peaks in the pulse train (and hence the peak intensity with
respect to the FTL solution), while ∆ corresponds directly to the time delay
between two consecutive peaks. Note that the maximally obtained alignment
yield in this scan was A ≈ 0.68 and ∆ = 1.7ps; However, its corresponding
peak intensity was too high for the model, i.e., I > 0.36 · IFTL.

Figure 9.13 presents a cut of the contourplot scan of Figure A.7, at the
maximally obtained yield in the allowed range (0.589). It was concluded in
[162] that this approach was not �exible enough to adapt to the �ner details
of the time-dependent alignment response.

9.3 Investigation of Optimality: Zero Kelvin

Here we focus in a simpli�ed variant of the original alignment problem, at
zero temperature (T = 0 K) and with only a single rotational level at the



166 Chapter 9. Dynamic Molecular Alignment

initial distribution. The numerical modeling of Eq. 8.8 considers nowM = 0
and reads:

|Ψ(t)⟩ =
Nrot∑
J=0

α
(g)
J (t) |gJ⟩+ exp (−iω0t)α

(e)
J (t) |eJ⟩ (9.7)

The motivation for this simpli�cation is to allow studying the physical
characteristics of the optimal solutions, which would not have been possible
for the general case, e.g., tracking the time-dependent population of the
rotational levels, given only the ground level at initialization. From the
technical perspective, this simpli�cation reduces the simulator evaluation
time to approximately 5s on a single P4-HT 2.6GHz processor.

We carried out calculations optimizing �eld-free molecular alignment
starting from J = 0 for a number of algorithmic approaches and various
Rabi peak frequencies. In each case, the same calculation was attempted
by means of 20 runs. Each run was limited to 20, 000 function evaluations.
We restrict the discussion in this section to the best results obtained in each
series of 20 trials.

Figure 9.14 presents a comparison between one optimization of dynamic
alignment starting from J = 0, performed using the DR2 algorithm under
perturbative conditions

(
Ωge = 40× 1012s−1

)
and four optimizations per-

formed under non-perturbative conditions
(
Ωge = 160× 1012s−1

)
using both

the DR2 and the CMA algorithms, with either a direct/plain parameteriza-
tion of the phase or with the Hermite parameterization, employing the �rst
Kmax = 40 Hermite polynomials. Furthermore, based on our previous obser-
vations in this chapter, we employed (1, 10)-DR2 or {(7, 15), (8, 17)}-CMA
(the latter depends on the parameterization used).
The obtained result at low laser intensity

(
Ωge = 40× 1012s−1

)
is simple: A

pulse train is observed where the spacing between the peaks is approximately
the rotational period of a coherent superposition state consisting of J = 0

and J = 2 only
(
Trev02 = 1

6Brotc
= 1.1ps

)
. The time-dependent intensity is

given by a train of pulses where the largest pulse reaches an intensity of
0.36 · IFTL.

The obtained pulse-shapes at high laser intensity (Ωge = 160× 1012s−1),
are considerably more complex and no simple periodicity can be observed.
The averaged as well as largest values of

⟨
cos2 (θ)

⟩
attained are shown in

Table 9.5.
In consistency with the numerical results of the previous section, the

highest alignment yield values attained for this particular system were also
obtained by the DR2 with plain parameterization as well as by the CMA with
Hermite parameterization. Employing the CMA with plain parameterization
or the DR2 algorithm with the Hermite parameterization yields a slightly
lower values over 20 trials. Based on our experience with the problem and the
algorithms, the yield di�erences of Table 9.5 are believed to be signi�cant.
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Figure 9.14: (a) Comparison of an optimization performed employing the
DR2 algorithm with Ωge = 40 × 1012s−1 and (b) Four calculations with
Ωge = 160 × 1012s−1 employing the DR2 and the CMA algorithms with
either a plain or Hermite parameterizations of the control phase function.

(1, 10)-DR2 {(7, 15), (8, 17)}-CMA
Plain Param. 0.9559± 0.007 (0.9622) 0.9413± 0.006 (0.9508)

Hermite Param. 0.9501± 0.004 (0.9570) 0.9583± 0.003 (0.9618)

Table 9.5: Maximizing the cosine-squared �eld-free molecular alignment
starting from J = 0 (T = 0K) at Ωge = 160 × 1012s−1 over 20 runs with
20, 000 function evaluations per run; Mean and standard-deviation values
are given, with the maximal value obtained in brackets.
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This is supported by inspection of the pulse shapes shown in Figure 9.14.
The two most successful optimizations (CMA/Hermite and DR2/Plain) not
only share their yield value of

⟨
cos2 (θ)

⟩
, but furthermore make use of a pulse

shape that is very similar.

9.3.1 Conceptual Quantum Structures

The time-dependent population of the rotational levels can be analyzed in
a fairly simple technique, known as the Sliding Window Fourier Transform

(SWFT), which provides us with a powerful visual tool. Given the re-
vival structure of an obtained solution, a sliding time window is Fourier
transformed, to produce the frequency picture through the alignment pro-
cess. This windowing creates a transformation which is localized in time.
Due to the quantization of the rotational levels, only certain frequencies (or
energy levels, respectively) are expected to appear.

We applied the SWFT routine to the optimal solutions which were found
in the various runs under non-perturbative conditions. Figures A.10, A.11,
A.12 and A.13 visualize the typical population process of the rotational levels
for four typical solutions of the di�erent optimization procedures (2 param-
eterizations times 2 DES variants). The observed quantum energy levels are
indeed as expected from theory.

The results reveal two di�erent conceptual quantum structures, which
correspond to optimal and sub-optimal solutions in terms of the alignment
yield. The plain-DR2 as well as the Hermite-CMA procedures obtain the
best solutions, which share the same structure - they are characterized by
the dominant population of the 4th rotational level in the SWFT picture,
corresponding to J = 6. On the other hand, the plain-CMA and Hermite-
DR2 procedures obtain solutions with lower yield, which are characterized
by a gradually increasing population of the rotational levels.

The original revival structures for two obtained solutions, representing
the two conceptual structures, are given in Figures A.8 and A.9. The optimal
family of solutions (Figure A.8) possesses a dramatic revival structure, with
a typical strong pulse in the train which lies on the boundary of the punished
regime (I ≈ 0.36 · IFTL). This strong pulse seems to be essential in giving
the molecules the right 'kick', and most likely responsible for the dominant
population of the 4th rotational level in the SWFT picture (J = 6). The sub-
optimal family of solutions (Figure A.9) possesses a revival structure with
a smooth exponential envelope, and thus has a gradual building-up of the
rotational levels in the SWFT picture, respectively. It typically contains a
train of medium pulses and lacks a dominant one.

We would like to emphasize the fact that we obtained the same family of
optimal solutions, representing a single Quantum structure, from two di�er-
ent optimization approaches: The �rst employs a �rst-order DES subject to
direct pixelation of the control phase, while the other employs a second-order
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DES subject to Hermite expansion of the control phase.

9.3.2 Maximally Attained Yield

While this does not constitute a proof, we speculate that within the con-
straints in the optimization (i.e., the �nite pulse bandwidth and energy, as
well as the �nite resolution of the phase function), both algorithms have
found a solution that approaches the best solution that is possible. How-
ever, even if the solutions are optimal within the constraints set by the laser
bandwidth, the laser pulse energy and the parameterization of the phase,
it is clear that the solutions do not approach the maximum alignment that
can be supported by the basis of Nrot = 20 rotational states (see Eq. 9.7)
that were used in the calculation. The maximum alignment supported by
this basis is the largest eigenvalue of the observable matrix, which was found
to be 0.9863. The corresponding eigenvector will be referred to here as the
maximal eigenvector or the maximal wavepacket.

We ascribe the di�erence between this maximum value and the values ob-
tained in the optimizations as being largely due to the �nite laser bandwidth
in our calculations. The bandwidth and the pulse duration of a laser pulse
with a Gaussian shape are related by Eq. 6.30, where the spectral amplitude
parameter reads cB = 0.441. Thus, for a pulse with a 100fs Fourier-limited
duration, the bandwidth is ∆ωlaser,FWHM = 0.0182eV = 147cm−1. When a
molecule undergoes a Raman transition from J = J0 to J = J0 + 2, the en-
ergy absorbed from the laser �eld is Brot · (4J0+6). This absorbed energy is
the di�erence between the pump- and dump-photons involved in the Raman
excitation. Consequently, the Raman excitation becomes frustrated when
Brot · (4J0 + 6) > ∆ωlaser,FWHM . In our case, with a rotational constant of
Brot = 5cm−1, this threshold occurs for J0 ≈ 6.

As Figure 9.15 shows, the rotational wave packet that displays the largest
alignment after the optimization contains only limited contributions from
J = 8 and J = 10, and none from rotational levels above J = 10. By
contrast, the maximal wavepacket contains contributions all the way up to
J = 18. In this respect, it may appear to be surprising that a high yield of
0.962 can be obtained when the optimized wavepacket di�ers so much from
the maximal wavepacket. In order to assess the crucial in�uence of the band-
width constraint on the cut-o� of accessible J values, additional calculations
were performed with the original bandwidth doubled, while the �uence was
kept �xed (thus corresponding to a 50fs pulse with Ωge = 226 × 1012s−1).
These results are also presented in Figure 9.15 as a reference to the calcula-
tions with the original bandwidth. The doubling of the bandwidth permitted
populating up to J = 12, and thus produced an enhanced alignment yield
of 0.975. Note that the distinction between the two families of solutions,
corresponding to the two algorithmic classes, as discussed in Section 9.3.1,
can be clearly observed in Figure 9.15.
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The di�erence between the maximal wavepacket and optimized wavepacket
is also re�ected in the angular probability distribution functions, as presented
in Figure 9.16. These probability distribution functions are respectively con-
structed from the coe�cients of the maximal eigenvector as well as the state
obtained from the optimized �eld, based on Eq. 9.7. Even though at the
higher bandwidth the discrepancy between the optimally controlled distri-
bution function and the maximally attainable limit appears to be signi�cant,
a high alignment value was still obtained.
The explanation for this excellent behavior, despite considerable di�erences
in the composition of the wavefunction, lies in the variational principle (see,
e.g., [126]), which states that a �rst order error in a trial wavefunction (i.e.,
the wavepacket from the bandwidth limited optimal control �eld) will pro-
duce an extremum eigenvalue (i.e., alignment yield) of second-order error:

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

=
En + ⟨δ|H |δ⟩
⟨n|n⟩+ ⟨δ|δ⟩

= En +O
(
δ2
)

(9.8)

9.3.3 Another Perspective to Optimality: Phasing-Up

When a molecule is exposed to a shaped, intense laser pulse the optimiza-
tion has to accomplish two things. First, the optimization has to create a
wavepacket consisting of a large number of rotational states that can serve to
align the molecule. Second, the optimization has to prepare the wavepacket
with the correct phase relationship between the component wavefunctions, so
that during its �eld-free evolution these components would coherently add-up
to generate an optimally aligned wavefunction. While there is no criterium
available that allows us to ascertain whether the algorithm has optimized
the population distribution, it is possible to investigate the phase relation-
ship of the component wavefunctions in the optimized solutions. Maximum
alignment occurs if at some point in time the phases of all component wave-
functions di�er from each other by 0 (modulo 2π).

Explicitly, given a wavefunction,

ψ =
∑
j

a
(t)
j · |j⟩ · exp

(
−iEjt

~

)
,

the coe�cients a(t)j are complex numbers, and as such can be expressed in
their polar representation:

a
(t)
j = r

(t)
j · exp

(
iφ

(t)
j

)
. (9.9)

We thus question whether given a certain population - does the optimization
routine produce the optimal set of phases φ(t)

j ? In order to answer this
question, a simple optimization procedure was implemented in the following
manner: It accepts the a(t)j as input, and aims at optimizing the phases φ(t)

j
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Figure 9.15: TOP: The distribution of the maximal and the best opti-
mized wavepackets over the rotational states. Stars represent the maximal
wavepacket in the �nite rotational basis (i.e., corresponding to the highest-
ranked eigenvector of the observable matrix). Diamonds represent the 1st

optimized set of solutions (CMA-Hermite / DR2-Plain), and Squares repre-
sent the 2nd optimized set of solutions (CMA-Plain / DR2-Hermite); Circles
represent calculations with doubled bandwidth and the same �uence (50fs
pulse with Ωge = 226 × 1012s−1), optimized by the DR2 subject to plain
parameterization. The �gure clearly shows that the limited �eld bandwidth
cuts o� the rotational states for the optimized solutions after J = 10, when
the original bandwidth is used, or after J = 12 when the bandwidth is dou-
bled. Furthermore, this plot illustrates the distinction between the two
families of solutions for the original bandwidth (i.e., Diamonds ver-
sus Squares) arising from the di�erent algorithmic approaches. BOTTOM:
The alignment as a function of the overlap of the optimized wavepackets |Ψ⟩
with the maximal eigenvector |V ⟩. Note that the overlap for the original
bandwidth never exceeds 0.8 in magnitude. Also note the three clusters
for the families of algorithmic solutions.
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Figure 9.16: Left axis: Normalized angular probability distribution function
for the maximal case |ψmax (θ)|2 sin (θ), and the optimized control function
|ψopt (θ)|2 sin (θ). Right axis: The value of cos2 (θ). The constraints pro-
hibit the evolutionary algorithm from attaining the absolute maximal angu-
lar probability distribution function; However, the expectation value of the
observable

⟨
cos2 (θ)

⟩
opt

= 0.9621 when using the original bandwidth corre-
sponding to a 100fs Fourier-limited pulse is within 0.025 of the maximum
attainable value

⟨
cos2 (θ)

⟩
max

= 0.9863. When doubling the bandwidth (i.e.,
basing the shaped laser pulse on a 50fs Fourier-limited pulse)

⟨
cos2 (θ)

⟩
opt

increases to 0.975, which is only 0.0113 away from the maximum attainable
value.

such that the cosine-squared alignment is maximized. Practically, it uses a
subroutine from the general alignment code for the evaluation, and applies
the CMA algorithm for the tuning of the 10 relevant phases. Note that a
single function evaluation has the duration of ≈ 0.5s.

We considered 50 di�erent cases of high-quality solutions to the alignment
problem (all solutions have cosine-squared-alignment values in the regime of
0.95) - for each test case 100 independent optimizations were run, aiming to
tune the phases.

The experimental results are clear and sharp. They are presented at two
levels:

1. In all 100 runs for all 50 test-cases - the best solution has always
synchronized phases. There are di�erent phase values per run, but
it does not make a di�erence for the cosine-squared alignment, as long
as the populated levels hold that same phase value. Explicitly, the
Sigma-RMS of the phases was calculated:

∆φoptimal = 0.0117
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2. The 50 test-cases, as originally obtained by the original optimization
prior to this optimization procedure, held phases which were not far
from being synchronized,

∆φDR2 = 0.0566,

and indeed, the optimizations did not improve the cosine-squared align-
ment dramatically: Always less than 1% improvement was recorded.

We consider this a very strong result - the evolutionary optimization routine
managed to tackle the �ne-tuning of the quantum control problem, behind
the complex transformations and the so-called Schrödinger black-box.

To summarize, while we cannot establish whether the optimization has
distributed the population in the best possible way, we do observe that the
algorithm has properly phased-up all component wavefunctions with respect
to each other. This type of coherent alignment of phases was also observed
to be optimal in the mechanistic analysis of another state-to-state control
application [163].

9.4 Evolution of Pulses under Dynamic Intensity

Our observation so far regarding the alignment problem, and in particular
concerning its zero-Kelvin variant in the previous section, provides us with
the motivation to investigate optimized pulse structures that obtain high
alignment yield at di�erent laser intensities, and especially their evolution
subject to a slowly-varying laser intensity. This section is a direct experimen-
tal continuation to Section 9.3, considering solely the zero-Kelvin alignment
variant with two speci�c algorithmic approaches that were employed for its
optimization: the DR2-plain and CMA-Hermite procedures.

9.4.1 Evolutionary Algorithms in Dynamic Environments

From the algorithmic perspective, the optimization framework becomes now
an evolutionary search subject to a dynamic environment [71].

Evolutionary Algorithms are natural candidates for optimization in dy-
namic environments, due to the straightforward analogy with organic evo-

lution, which occurs in a continuously varying environment. Typical ap-
proaches for dynamic environments include the promotion of diversity, the
use of multi-populations, the introduction of memory-based components,
or the assignment of so-called scouts that maintain information about the
search space.

Evolution Strategies are a particularly good choice, for their built-in mu-
tative self-adaptation mechanism. The standard-ES has been demonstrated
to perform well under a dynamic environment of a time-varying sphere
model ("a landscape with catastrophes"), using a comma strategy and with
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no recombination (see, e.g., [164]). The mutative self-adaptation mechanism
played a crucial role, in allowing a rapid adjustment of the evolving individ-
uals to the time-dependent location of the global maximum: The optimal
mutation strategy parameters were learned successfully, without exogenous
control. Other empirical studies extended this model to continuously mov-
ing peaks, and reported on satisfying adaptation of the standard-ES [165].
Arnold and Beyer considered speci�c derandomized Evolution Strategies,
and showed theoretically that the step-size adaptation mechanism works per-
fectly well on a moving-sphere problem [166]. In light of these �ndings, we
�nd our candidate derandomized ES variants perfectly suited for the current
optimization task.

9.4.2 Dynamic Intensity Environment: Procedure

In order to observe, and possibly understand how the optimal laser pulse
shape evolves from the simple pulse train obtained for Ωge = 40 × 1012s−1

(Figure 9.14 (a)), into a much more complicated pulse-shape for Ωge = 160×
1012s−1 (Figure 9.14 (b)), a series of calculations were conducted where Ωge

was increased linearly as a function of the generation number. In
these calculations, the molecule was initially exposed to a shaped laser �eld
with Ωge = 40 × 1012s−1, and over 10, 000 generations this value linearly
increased to Ωge = 180 × 1012s−1. This was immediately followed by a
linear decrease of the intensity over additional 10, 000 generations, back to
the initial value of Ωge = 40 × 1012s−1. Note that a generation involves 10
or 15 function evaluations, for the DR2-plain or CMA-Hermite procedures,
respectively. Furthermore, we consider two control resolutions for the plain-
parameterization, n1 = 80 versus n2 = 160, in order to test the algorithmic
performance in these two search space dimensions.

The analysis of the dynamic intensity environment is discussed next at
several levels.

Intensity Milestones: Dynamic vs. Static Optimization

Figure 9.17 presents the best evolution runs of the DR2-plain optimization
procedure for n1 = 80 and n2 = 160 pixels, respectively. It contains four
curves, which correspond to the evolution progress in the ramped-up and
ramped-down laser intensity environments of the two di�erent runs. Note
that the ramped-down curves of the two runs merge. The ramped-up curves
di�er signi�cantly in the initial learning periods, due to the di�erent search
space dimensionality, as expected.

Following the initial learning period of the optimization procedure, a
smooth increase is observed in the alignment yield

⟨
cos2(θ)

⟩
, as a function

of the laser intensity. The best
⟨
cos2(θ)

⟩
value, as reported in the static

high intensity case (Table 9.5), is successfully recovered: A
⟨
cos2(θ)

⟩
value
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of 0.962 was obtained at Ωge = 160 × 1012s−1. Thus, the dynamic environ-
ment does not hamper the optimization performance given a desired target
intensity, as long as the initial learning period is passed.

Figure 9.18 presents a comparison between the pulse-shape attained
by the DR2 during a dynamic-intensity run at the milestone of Ωge =
160×1012s−1, to the equivalent optimized pulse-shape attained in the static
optimization procedure at the same Rabi frequency milestone, previously
shown in Figure 9.14. Several conclusions may be drawn from this com-
parison. While the

⟨
cos2(θ)

⟩
yield value is similar for both calculations (as

well as in further calculations using this approach), the pulse shapes are
dramatically di�erent. Evidently, the pulse shape that the algorithm �nds
is heavily in�uenced by the way that the adaptation of the pulse intensity
steered the calculations through the search landscape. This behavior is con-
sistent with theoretical analysis of Quantum Control landscapes and their
level sets [131, 134].

Evolution of Pulses

We devote this section to the exploration of the pulse shapes obtained in
the dynamic intensity environments. Our experimental procedure has essen-
tially an asymmetric nature due to its two stages: The �rst stage of ramping
the intensity from low-to-high requires a learning phase (see Figure 9.17),
whereas when reversing the process and bringing the intensity back down
the optimization starts from a converged result. Thus, highly optimized
solutions can be maintained throughout the latter excursion, and the transi-
tion from high-to-low intensity can be continuously observed. This process
is illustrated both in Figure 9.19 and in Figure 9.20. In the latter, a se-
quence of pulses are shown, starting from pulses at low intensity (top-left
corner), where the learning process takes place, moving along the snapshot
gallery in a matrix-indexing-order fashion, to the center of the plot where
the intensity is in its maximal regime, before reducing to a lower inten-
sity again for the pulses shown in the lower-right part of the plot. These
latter pulse-shapes are very simple pulse trains, with a pulse separation of
1/(3Brotc) = 2.2ps. Such a pulse train is very di�erent from the pulse train
obtained for the static problem (Figure 9.14), where a pulse separation of
1.1ps was observed in the static calculation at Ωge = 40 × 1012s−1. Never-
theless, the alignment observed at the end of the optimization of Figure 9.20
reaches a value of

⟨
cos2(θ)

⟩
= 0.548, which compares rather well with the

value of 0.550 obtained in Figure 9.14. At these low intensities, as previously
observed at high intensity, vastly di�erent pulse shapes are able to produce
similar optimized values of

⟨
cos2(θ)

⟩
. These solutions are on a level set, but

the present calculations do not reveal if these solutions are on connected
(i.e., continuously morphable from one level set to another), or disconnected
components of the level set. At low intensity, the 1/(6Brotc) = 1.1ps pe-
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Figure 9.17: Evolution course of the best DR2-plain runs for phase resolu-
tions of n1 = 80 and n2 = 160 pixels, on the ramped-up intensity (dashed
or dotted, respectively) versus the ramped-down intensity (reversed direc-
tion, solid curves that merge for both runs). Each direction corresponds to
105 generations (106 function evaluations).

Figure 9.18: Comparison of pulse shapes that were obtained in optimizations
employing the DR2-plain procedure, when using a �xed Ωge = 160×1012s−1

(bottom, and see Figure 9.14), or � at this same value of Ωge = 160×1012s−1

� in the course of an optimization where Ωge was linearly varied from 40 ×
1012s−1 to 180× 1012s−1.
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Figure 9.19: Intensity dependence of the alignment
⟨
cos2(θ)

⟩
and the laser

pulse shape from the ramped-up dynamic intensity environment, subject
to a linear increase: Ωge := 40 × 1012s−1 → 180 × 1012s−1. Snapshots are
taken at � (a) 54 × 1012s−1, (b) 110 × 1012s−1, (c) 166 × 1012s−1 � and
analyzed respectively.
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riod observed in Figure 9.14 and the 1/(3Brotc) = 2.2ps period observed in
Figure 9.20 correspond to a laser interaction that occurs once per period
Trev02 = 1/(6Brotc) = 1.1ps of the J = (0, 2) coherent superposition state
(Figure 9.14), or every second period (Figure 9.20). This can easily be ob-
served in Figure 9.19, where the temporal behavior is shown for the laser
pulse shape and the induced dynamic alignment for Ωge = 54 × 1012s−1,
Ωge = 110×1012s−1, and Ωge = 166×1012s−1. As the intensity is increased,
higher rotational states begin to contribute to the rotational wavepacket and
the Trev = 1/(2Brotc) = 3.3ps rotational period begins to assert itself. This
is a consequence of the energy di�erences between rotational levels J0 and
J0 + 2, being multiples of 2Brot for all values of J0. In the latter half of
the pulse (t > 0), additional narrowly spaced pulses come into play, being
spaced by Trev/4 = 1/(8Brotc) = 0.8ps. The occurrence of these new peaks
comes at the expense of the peak at 2.2ps, which is considerably weakened
in the calculation at Ωge = 110×1012s−1 (Figure 9.19(b)), and is completely
absent in the calculation at Ωge = 166 × 1012s−1 (Figure 9.19(c)). In the
latter calculation a new peak has appeared at a delay of 3.3ps, corresponding
to the full revival of the rotational wavepacket formed.

We thus conclude that the optimal pulses observed in the simulations
arise as a result of an interplay between the temporal structure that is re-
quired to optimize the transfer from J = 0 to J = 2, leading to peak sep-
arations that are a multiple of 1/(6Brotc), and the temporal structure that
is required to optimize the transfer from there to higher rotational levels,
which leads to peak separations that are multiples of 1/(8Brotc).

Step-Size and Phase Trajectories

Figure 9.21 presents the calculation of the Euclidean distance between evolv-
ing control phase functions that are determined sequentially as optimal ev-
ery 100 generations (i.e., between following best-individuals), as well as the
global step-size of the mutation operator in those time stamps. Dramatic
changes between control phases are observed in the initial learning period,
as expected. This is followed by a trend of mild changes, with several bursts
of ≈ 2π variations. We propose the so-called wrapping e�ect as an ex-
planation for these ≈ 2π-jumps: The control phase function is subject to
[0, 2π]-periodic boundary conditions, that are enforced by wrapping a phase
value. Upon examination of the phase space, it is indeed con�rmed that
these bursts are caused by a boundary wrapping of a phase function value
(its index varies). We thus conclude that the variations in the phase space
are consistently mild subject to the dynamic laser intensity. This is consis-
tent with the step-size behavior (presented in log10 scale), which stays in the
order of 10−2 after the learning period, with expected �uctuations.

Interestingly, following the initial learning period, the algorithm "stays
in the neighborhood", which seems to be su�cient for determining optimal



9.4. Evolution of Pulses under Dynamic Intensity 179

Figure 9.20: Evolution of laser pulses subject to linearly increased followed
by linearly decreased laser intensity, Ωge := 40×1012s−1 → 180×1012s−1 →
40 × 1012s−1, presented as snapshots of optimized pulse shapes at speci�c
intensity milestones. The order follows a matrix-indexing fashion. The pulse-
shapes obtained in the end of the process, i.e., after the ramping-down to
the regime of low-intensity (bottom right) are a simple pulse train with pulse
separation of 1/(3Brotc) = 2.2ps.
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Figure 9.21: The evolution course of the DR2-plain on n1 = 80 pixels sub-
ject to the ramping up and down laser intensity environment. Dashed line �
unscaled �tness evolution; Thin solid line � the Euclidean distance between
evolving control phase functions [scaled on the left axis]; Thick line - global
step-size of the mutation operator [log-scaled on the right axis]. Dramatic
Euclidean trajectories in the control phase function are observed during the
initial learning period, as well as at speci�c bursts of ≈ 2π variations, corre-
sponding to the so-called wrapping e�ect.

controls for the continuously changing laser intensity. This means that high
alignment yield at di�erent laser intensities corresponds to a neighborhood
of the control space.

9.5 Scalability: Control Discretization

In this section we aim at exploring the scalability of the alignment problem
with respect to the control resolution. So far, the latter has been �xed in
our calculations to n = 80. In particular, we would like to study the trade-
o� between the control resolution, which allows �ne-tuning of the electric
�eld, to the success-rate of the evolutionary learning process, subject to a
�xed number of function evaluations. Due to computational considerations,
we choose to conduct the scalability calculations on the zero-Kelvin variant
of the alignment problem. Also, we select the DR2 subject to the plain
parameterization as our optimization kernel for this investigation.
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Figure 9.22: Best, mean and worst cosine-squared alignment values obtained
by the DR2 for each parameterization, over 10 runs of 20, 000 function eval-
uations each (see legend).

9.5.1 Numerical Observation

We apply the DR2 algorithm to the optimization task in the following man-
ner: 10 runs per control discretization, with n = {80, 100, 120, . . . , 680, 700},
and additionally with n = {800, 900, 1000}. Each run is limited to 20, 000
function evaluations.

Figure 9.22 presents the numerical results of these calculations. The best,
mean and worst �tness values obtained by the DR2, after 20, 000 function
evaluations, for each discretization, are presented. As can be observed, the
best �tness value is attained for n = {80, 100}; As the dimension n increases,
there seems to be a weak trend of �tness values decrease, but the DR2
still manages to obtain high quality solutions in the regime of 0.94 even for
n = 400.

A typical evolution run for n = 100 is given in Figure 9.23. As can
be observed from this plot, a successful learning is obtained after ≈ 5, 000
function evaluations. In higher dimensions, i.e., n ≥ 500, the DR2 does
not succeed in tackling the problem within the limited number of function
evaluations. A typical run for n = 700 is presented in Figure 9.24.
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Figure 9.23: A typical DR2 evolution run for n = 100, with 20, 000 function
evaluations. Successful learning is observed after ≈ 5, 000 evaluations.

Figure 9.24: A typical DR2 evolution run for n = 700, with 20, 000 function
evaluations. No successful learning is observed.
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Figure 9.25: DR2 evolution run, for n = 1000, with 100, 000 function eval-
uations. The best cosine-squared alignment value found was f∗ = 0.9583.

Granting Additional Function Evaluations

Given the numerical results of the previous section, we were interested in
the question whether the �xed number of function evaluations posed a lim-
itation on the search and did not allow a successful learning of the decision
parameters and convergence into a good solution.

We have conducted another series of runs, limited now to 100, 000 func-
tion evaluations, for the extreme case of n = 1000. We were surprised to
�nd out that some of the runs did succeed in converging successfully into
�ne solutions of high yield values. In particular, we would like to point
out a run which attained a solution with cosine-squared alignment value of
f∗ = 0.9583, a value which is close to the highest value known to us for this
variant of the problem. The plot of that speci�c evolution run is given in
Figure 9.25. A rough observation reveals that the DR2 'takes-o�' into a con-
vergence pathway only after ≈ 50, 000 function evaluations, and then it needs
additional 30, 000 function evaluations to reach saturation. This numerical
observation indicates that the learning task of the decision parameters in
this problem is still feasible in higher dimensions of the control function,
as long as the granted number of function evaluations is su�ciently large.
From the algorithmic perspective, the employed DES variant, the DR2 algo-
rithm, tackled successfully this 1000-dimensional problem. However, from
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the physics perspective, such a high-resolution parameterization
does not seem to pay-o�, as far as the cosine-squared observable
is concerned, and there seems to be no justi�cation to employ
discretization of the control phase function with more than n=80
pixels.

9.6 Intermediate Discussion

Our calculations so far, especially in Sections 9.3 and 9.4, show that it is
possible to encounter high diversity of optimal solutions in constrained nu-
merical simulations of Quantum Control, and moreover, that the examina-
tion of such rich sets of solutions can become an important aspect of the
control experiments. The diversity of successful controls likely contains use-
ful dynamical information, and may also provide the decision maker with
a list of choices to consider for weighing in other ancillary control criteria,
e.g., multi-criterion decision making. The present calculations optimizing
dynamic molecular alignment in a diatomic molecule exposed to an intense,
shaped laser �eld, provide compelling evidence that the absolute value of
the quantity that is being optimized (i.e., the �tness) is the true measure of
success, and that the same value of the �tness may be achievable by widely
di�ering laser pulse shapes that share only a limited number of common
features. Each of these solutions has the potential of carrying valuable infor-
mation about the underlying physics, where some of the solutions provided
key information on the dynamics of the alignment process. Viewed in this
sense, the uniqueness of the �tness value, and the diversity of the solutions
that can lead to accomplishment is a blessing in disguise.

We also showed that the optimized alignment yield attained a value which
was very close to the maximal possible yield in the current framework, even
when the constraints on the optimization translated into a signi�cant distor-
tion of the resultant wavepacket. By relaxing speci�c constraints, we showed
that it was possible to enhance the observable alignment further toward the
maximal attainable alignment possible for the rotational basis set used. This
outcome leads to the optimistic conclusion that high yields may be obtained,
even when a priori it seems that the system is subject to severe constraints
for constructing the wavepacket. As discussed, the origin of this behavior
can be understood in terms of the variational principle, as well as the phys-
ical observable involving an integration over the wavefunction which hides
some of its discrepancies.

As a direct implementation of these conclusions, we would like to com-
plete our work on the optimization of dynamic molecular alignment by means
of two additional aspects - multi-objective optimization, as well as niching.
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9.7 Multi-Objective Optimization

As further investigation of the alignment problem, we would like to ex-
tend our single-criterion optimization approach to a Pareto Optimization
approach. As previously introduced in Chapter 5, Pareto Optimization aims
at attaining the e�cient set for a given multi-objective optimization prob-
lem and its corresponding Pareto front. In particular, we are interested in
removing the penalty approach to high-intensity pulses, and rather consider
the �uence of the pulse as an independent objective, subject to minimiza-

tion. Thus, the observable's yield remains as an objective, while we choose
to de�ne the total-SHG signal of the electric �eld as the secondary objective
subject to minimization.

Formally, we aim at �nding the Pareto front for the following bi-criteria
problem:

f1 = maxE(t)
⟨
cos2(θ)

⟩
−→ max

f2 =

∫ ∞

−∞
|E(t)|4dt −→ min

(9.10)

In order to select an appropriate optimization method, the following char-
acteristics of the objective functions in the application problem are of im-
portance: Based on our accumulated experience with the problem in its
single-criterion form, we assume that the functions f1 and f2 are continu-
ous in most points, highly nonlinear and multimodal. Nothing is known yet
about the shape of the Pareto front for the application problem. Analytical
techniques and methods based on di�erential calculus are likely to fail in this
problem, because of the complexity of the integral equations.

9.7.1 Choice of Methods

We choose to apply the NSGA-II, as presented earlier (Section 5.1.2), to the
current task. Due to the duration of the simulator evaluation, we would like
to consider a speci�c metamodel that may allow for the acceleration of the
calculations.

Metamodel-Assisted NSGA-II In order to accelerate stochastic opti-
mization algorithms in the presence of time consuming function, metamod-
els have been frequently proposed (see, e.g., [167, 168, 169]). A metamodel
is an approximation of an objective function that is learned from a set of
evaluations.

More explicitly, given a set of points x⃗(1), . . . , x⃗(k) ∈ Rn, and the cor-
responding evaluations of the objective functions at these points, f⃗ (1) =
f
(
x⃗(1)

)
, . . . , f⃗ (k) = f

(
x⃗(k)

)
, the metamodel can be used to compute an

approximation, denoted by f̂(x⃗) ≈ f(x⃗), for any point x⃗ ∈ Rn, in a dura-
tion which is considerably shorter than the precise evaluation. As expected,
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metamodels tend to be more precise near the training points.
Kriging1, also referred to as Gaussian random �eld models, is a partic-

ular type of interpolation model that has been frequently applied for meta-
modeling [167, 168, 169]. The statistical motivation for this method is that
the deterministic objective functions are considered to be realizations of a
Gaussian random �eld G. This assumption makes it possible to compute a
measure for the uncertainty of predictions, i.e., each prediction value is asso-
ciated with a standard deviation that can be used for computing two-sided
con�dence intervals.

It is typically assumed that these random variables Gx⃗ are correlated by
means of a spatial correlation function,

c : Rn × Rn → [−1, 1],

i.e., a correlation function that depends only on the positions of the random
variables in space. In our study we shall use a correlation function of the
form:

c(x⃗, x⃗′) = exp
(
−θ
∣∣x⃗− x⃗′∣∣2)

The correlation function of the Gaussian random �eld is estimated from the
given data, or given a-priori. In this study we apply leave-one-out cross-
validation to determine an appropriate value of θ, as suggested in [170].
After the correlation function is estimated, the prediction is made. For this
purpose, the conditional Gaussian distribution at the given input vector
x⃗ ∈ Rn is computed.

A practical implementation of Kriging has been described by Emmerich
[101], and it was successfully employed in engineering design optimization
[100, 169, 171]. Multi-objective problems were typically approached by learn-
ing metamodels for each objective function separately, in an implementation
known as local Kriging. We omit here its derivations, and refer the reader
to [101].

In the metamodel-assisted NSGA-II [171], Kriging metamodels are used
to pre-evaluate the set of o�spring solutions and select favorable variants
among it for precise evaluation. The uncertainty information can be used to
facilitate search in less explored regimes of the landscape.

Algorithm 9 outlines the general Metamodel-Assisted Evolutionary Al-
gorithm (MA-EA), as described by Emmerich [101]. The di�erence to the
generic Evolutionary Algorithm can be summarized as follows:

• All precisely evaluated points are stored in a database, denoted by Dt

(cf. lines 4 and 9).

1Kriging originates from geostatistics, and is named after the mining-engineer Krige.
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Figure 9.26: Outputs of Gaussian Random Field Metamodels using a R→ R
mapping example. Three points, x⃗(1), x⃗(2), and x⃗(3) have been evaluated
here. The result of each approximated evaluation at a point x⃗′ is represented
by the mean value, ŷ, and by the standard deviation, ŝ, of a 1D Gaussian
distribution. Figure courtesy of Michael Emmerich [101].

• The algorithm �lters out less promising solutions (cf. line 8) and
thereby reduces the o�spring population size. The remaining solu-
tions are then precisely evaluated and considered in the subsequent
selection.

There are many possibilities to design �lters for that purpose. In this study
we restrict ourselves to constant output size �lters. The size of the resulting
�ltered set will be denoted by ν and the corresponding MA-EA will be termed
a (µ + ν < λ)-EA. All �lters will be rank-based, i.e. they sort the o�spring
population with respect to some criterion, a so-called �lter criterion.

We o�er a 3D visualization in Figure 9.27 in order to gain some intuition
into the di�erent concepts of �lters in the bi-criteria case. In the latter, the
Pareto-front approximation of the current population is depicted, as well as
three o�spring individuals, namely x⃗1, x⃗2 and x⃗3. The o�spring individuals
have been evaluated with the Kriging metamodel, and thus their precise
values are not yet known, but rather the de�ning parameters of 2D Gaussian
random variables, Gx⃗i

. The distributions of the random variables Gx⃗1
,Gx⃗2

,
and Gx⃗3

are also visualized in the diagram by means of their probability

density functions.
Four di�erent criteria have been discussed by Emmerich [101] for assigning
a yield value to a search point x⃗, which is based on the prediction provided
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Figure 9.27: Interval boxes for approximations in a solution space with two
objectives. Figure courtesy of Michael Emmerich [101].

by the de�ning parameters of the Gaussian predictor Gx⃗:

• Mean Value Non-dominated / crowding distance sorting, based on
the expected value for Gx⃗ given by f̂(x⃗).

• Lower Con�dence Bound (LCB) Non-dominated / crowding dis-
tance sorting on the lower bound edge of the con�dence interval of
Gx⃗.

• Probability of improvement (PoI): The probability that the re-
alization of Gx⃗ is non-dominated. It can be computed via integration
over the non-dominated set.

• Expected Improvement (ExI) The expected increase in the domi-
nated hypervolume for Gx⃗ is measured.

Modus Operandi

We applied the following algorithmic kernels to the Dynamic Molecular
Alignment:

• NSGA-II: The classical variant by Deb [99, 172].

• Metamodel-Assisted EA with Probability of Improvement (PoI-EMOA).

• Metamodel-Assisted EA with Expected Improvement (ExI-EMOA).

The parameterization of these methods is µ = 50, ν = 0.2 · λ, with two
di�erent settings for λ: λ = 250 and λ = 50. The parameters of the mutation
operator and recombination operator have been chosen as described by Deb
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Algorithm 9 (µ+ λ)-MA-EA

1: t← 0
2: Pt ← init() {Pt ∈ Sµ: Set of solutions}
3: Evaluate(Pt)
4: Dt ← Pt

5: while t < tmax do
6: Gt ← Generate(Pt) {Generate λ variations}
7: Metamodel_evaluate(Gt) {Metamodel is derived from Dt}
8: Qt = Filter(Gt)
9: Dt+1 ← Dt ∪Qt

10: Pt+1 ← Select(Qt ∪ Pt) {Rank and select µ best}
11: t← t+ 1
12: end while

[99]. Due to implementation considerations, in practice both objectives were
minimized, and therefore we assign:

f1 → max =⇒ −f1 → min

9.7.2 Numerical Observation

Figures A.14, A.15 and A.16 present the results of our calculations, where
the 20%, 50% (median), and 80% attainment surfaces are plotted. Each one
of them refers to 5 runs with 20, 000 evaluations per run. In order to make
the curves easier to be distinguished, we zoomed-in a box around the knee
point of the Pareto front approximations.

Discussion

The results clearly indicate that there is a con�ict between the two objectives,
as suspected. Thus, Pareto optimization is an appropriate tool for solving
this problem. The fact that a convex Pareto front has been observed suggests
that good compromise solutions are likely to be found. We observe a sharp
increasing �ank at both ends of the approximated Pareto front. Regions of
fair trade-o�s range from about −0.6 to −0.4 in the (−f1) coordinate.

There are signi�cant di�erences in the behavior of the multi-objective
EA variants. The best coverage of the Pareto front has been achieved by
the ExI-EMOA. This variant is the only variant that found solutions for f1
above 0.58. The highest value found was 0.6184. The PoI-EMOA resulted
in approximations with lower spread. However, the precision of this EMOA
variant was better in the regions covered. This result is consistent with
some theoretical �ndings reported in [171], as well as with their numerical
assessment on arti�cial problems reported there. The expected improvement
measure puts emphasis on exploring unknown regions, while the probability
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Figure 9.28: Left: f − f̂ - plot for (−f1); Right: f − flb - plot for (−f1).

Figure 9.29: Left: f − f̂ - plot for f2; Right: f − flb - plot for f2.

of improvement have the tendency to carry out better exploitation of visited
regions. Overall, the metamodel-assistance seems to be a valuable ingredient
for this problem, as can be seen by comparing the results of the NSGA-II
with those of the metamodel-assisted EMOA.

A more detailed analysis of the metamodel-based approximations was
performed, in order to assess whether the metamodeling worked as expected
from theory. The results are displayed in Figures 9.28 and 9.29, for one of
the runs with the ExI-EMOA (λ = 250). The f − f̂ plots indicate that in
the whole range of function values the results obtained with the metamodel
were strongly correlated with the true function values. The error bandwidth
for f1 is about 10% of its range versus 15% for f2 with respect to its range.
These results correspond to results in similar studies in metamodel-assisted
optimization [171]. Moreover, the lower con�dence bounds, denoted by flb,
have been compared to the outcome of the precise evaluations, f . Here, the
95.45%-lower con�dence bounds, as computed by the Kriging method, have
been assessed for their validity (see Figures 9.28 and 9.29). The results are
in conformity with theory for f1. However, some outliers for f2 in the region
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of flb from 0.15 − 0.2 should be reported. However, these outliers did not
seem to hamper the algorithmic performance.

From the physics point of view the obtained result is interesting, since
it shows the nature of the trade-o� between the alignment's observable and
the intensity of the electric �eld, expressed here by means of the second
harmonic generation signal. The importance of the intensity criterion is
likely to govern the decision of the expert on the trade-o� surface, which
is to look for solutions with relatively good f1 values in the region of fair
trade-o�s.

9.8 Application of Niching

We shall apply here our DES niching algorithms to the zero-Kelvin variant
of the dynamic molecular alignment. Following the application of niching to
the population transfer problem in the rotational framework, as described in
Section 8.3, we take into consideration the diversity measure issue, and fully
adopt the conclusions drawn in Section 8.3.1.

Modus Operandi

We consider here three niching strategies:

1. The (1, λ)-DR2 � for being the best method to perform on this problem,
and also as a representative of �rst-order strategies.

2. The (1, λ)-CMA � as a representative of second-order information strate-
gies.

3. The (1 + λ)-CMA � as a representative of elitist strategies.

We conduct 10 runs per method, searching for q = 3 niches, subject to plain
parameterization of the control phase at n = 80 pixels. Each run was limited
to 15, 000 function evaluations per niche.

9.8.1 Numerical Observation

The calculations are discussed at several levels.

Niche-Radius

Following the derivation done for the niche radius in the population transfer
problem in Section 8.3.2, we conducted preliminary runs with a niche-radius
of ρ = 110. However, it performed poorly, in an equivalent way to its initial
performance on the population transfer problem: The DR2 as well as the
CMA-comma failed, and the CMA-plus obtained good solutions only for the
�rst niche.
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Table 9.6: Three niches obtained in 10 runs � averaged yield values (in
parentheses - best value attained) � for the three employed niching strategies.

Ranked-Niches DR2 CMA CMA+

Best niche 0.9417 (0.9605) 0.8553 (0.9029) 0.9517 (0.9585)

2nd-best niche 0.8477 (0.9552) 0.8229 (0.8561) 0.9493 (0.9525)

3rd-best niche 0.8054 (0.8558) 0.7966 (0.8161) 0.9365 (0.9484)

Table 9.7: Niches correlation for the niches obtained in 10 runs � averaged
cross-correlation values, as de�ned in Eq. 8.16.

Niches Correlation DR2 CMA CMA+

c1,2 0.6784 0.6952 0.6312

c1,3 0.6288 0.6905 0.6062

c2,3 0.7593 0.6951 0.6414

We managed to get satisfying results for ρ̃ = 55, as will be reported here.
Thus, consider all the reported results here as obtained with ρ̃ = 55.

Success-Rate

The cosine-squared alignment of the three methods, for the three obtained
niches, is presented in Table 9.6. We can observe a clear trend - the CMA+
mechanism outperformed the other mechanisms, with consistent location
of three good niches on average. However, the DR2 mechanism managed to
obtain the top-quality solutions for the best as well as for the 2nd-best niches,
in consistency with our previously reported results. The latter typically failed
to locate a 3rd good niche. The CMA comma-strategy, on the other hand,
simply failed in obtaining satisfying niching results on this landscape.

Niches Cross-Correlation

We calculated the cross-correlation coe�cients for the obtained pulse-shapes
of the di�erent niches, as de�ned in Eq. 8.16. The results of these calcu-
lations are presented in Table 9.7. We may state that the pulse-shapes of
the di�erent niches are weakly correlated to one another. In particular, it is
interesting to note the low correlation values of the the CMA+ kernel.
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Laser Pulse Designs

Our de�nition of a distance measure to this problem has been proved to
be successful. The obtained pulses in the time-domain had indeed di�erent
characteristics, representing di�erent conceptual laser-pulse designs. Three
niches, obtained in a typical CMA+ run, are plotted by means of their pulse
intensities and revival structures in Figures A.17, A.19 and A.21.

Conceptual Quantum Structures Revisited

We would like to o�er an additional analysis for our niching solutions. Fig-
ures A.18, A.20 and A.22 provide the SWFT picture for the obtained so-
lutions. It can be observed that these three solutions represent the same
conceptual quantum structure of states population. This SWFT observation
reinforces our conclusions concerning the correlation between the employed
optimization routine in combination with the applied parameterization to
speci�c conceptual quantum structures, as drawn in Section 9.3.1. There-
fore, we do not �nd it surprising that all three obtained pulses share the
same 'behind-the-scenes physics', due to the fact that they were all obtained
with the same algorithmic kernel (e.g., CMA+), subject to the plain param-
eterization. This observation does not contradict our primary conclusion
that the niching process has been successful in locating three di�erent pulse
shapes in the temporal domain, as initially required. It simply reveals an
additional, well-hidden, degeneracy among the solutions. In the next section
we shall o�er a way to remove this second degeneracy completely.

Removing the Second Degeneracy

Given the additional degeneracy which was encountered in the SWFT space,
one can further develop a problem-speci�c diversity measurement. In this
case, our idea is to consider the wavepacket space, and more explicitly, to

evaluate the di�erences between the population of rotational levels,
∣∣∣a(t)j

∣∣∣2,
as the measurement of diversity between niches. The implementation itself
is straightforward, due to the fact that the vector of population coe�cients is
given by the alignment-routine. Since the coe�cients are normalized, subject
to the normalization postulate of Quantum Mechanics, it is fairly simple to
estimate the niche radius in this case.

Niche Radius: Wavepacket Space According to the Quantum Mechan-
ics normalization postulate, the wavepacket coe�cients in theN -dimensional
Hilbert space are normalized:

N∑
j

∣∣∣a(t)j

∣∣∣2 = 1
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In the wavepacket treatment for removing the second degeneracy, these co-
e�cients play the role of the decision parameters, as far as the diversity
measurement is concerned.

The calculation of r of Eq. 3.3 simply reads:

r =
1

2

√√√√Nrot∑
j=1

∣∣∣a(t)j

∣∣∣2 =
1

2

With q = 3 and Nrot = 20, Eq. 3.5 yields:

ρ =
1
2

3
1
20

≈ 0.47 (9.11)

Thus, we set it to ρ = 0.5. We choose to employ only the CMA+ kernel in
this case, subject to plain as well as Hermite parameterizations, aiming to
show feasibility of the de�ned diversity measure.

This newly-de�ned diversity-measurement for the alignment problem has
been observed to be successful. The obtained pulses in the temporal domain
had indeed di�erent characteristics, and in particular their shapes di�ered in
a satisfying manner. We consider here the results obtained when the Hermite
parameterization was employed. The best niche obtained in every run was
typically of the optimal class known to us: Both the cosine-squared alignment
yield, as well as the pulse shape and the population pro�le, were associated
with the best solutions reported previously. The second-best niche was a
representative of a sub-optimal set of solutions: It had a lower value of cosine-
squared alignment yield and a di�erent pro�le of population. However, note
that the third-best located niche was not typically an interesting solution,
as it had dramatically lower alignment values in comparison to the �rst two
niches. The temporal pulse-shapes themselves were very weakly correlated.

Typical solutions of best and second-best niches are plotted in Figures
A.23 and A.25, with their corresponding SWFT pictures in Figures A.24 and
A.26.

Discussion

We would like to summarize our numerical observation of the applied niching
algorithms to the dynamic molecular alignment problem. Niching with the
CMA+ kernel performed best, while always obtaining three niches of high-
quality laser pulses. The DR2 found the best solution, in consistency with
our previously reported observations, but did not perform well on the sec-
ondary niches. The CMA-comma failed to obtain satisfying niching results.

The original calculation of the niche radius was not successful at the
practical level, as reported for the population transfer problem. After intro-
ducing a factor of 0.5 to the original value, the niching process was observed
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to be successful. The obtained pulse-shapes were typically weakly correlated,
as required.

As far as the algorithmic performance is concerned, we adopt the conclu-
sions drawn for the application of niching to the population-transfer problem.
We thus ascribe the failure in practice of the originally calculated niche ra-
dius, as well as the compromised performance of the comma-strategy kernels
on the secondary niches, to the highly constrained nature of the landscape
when underposed to a radius-based niching framework.

Furthermore, we have applied a physics numerical assessment, at the
quantum rotational picture, with the so-called SWFT technique. The lat-
ter has supported previous observations concerning the correlation between
optimization routines in combination with parameterizations to conceptual
quantum structures. This observation revealed that all three niches of a
given run, which di�er su�ciently at the laser-pulse design level (tempo-
ral domain), typically share the same conceptual quantum structure at the
SWFT picture (wavepacket space). We o�ered another diversity measure,
which relies on the physics information, in order to remove this second de-
generacy. This approach indeed succeeded in that, and obtained multiple
solutions corresponding to di�erent conceptual designs.





While the growing corpus of knowledge could be represented by

the diameter of an expanding circle, the horizons of ignorance

and open questions would be then represented by the area of

that circle.

Chinese proverb

Summary and Outlook

Our journey has gone so far through the realms of Natural Sciences, while
keeping a guiding torch of Computing and Operations Research. The journey
is coming to its closure, and thus we would like to summarize it.

Our starting point was the �eld of Evolution Strategies, a computational
discipline which stems from Evolutionary Biology. We presented it in Chap-
ter 1, and described in detail a new generation of its algorithms, the so-called
Derandomized Evolution Strategies. We suggested to consider these state-
of-the-art ES variants as powerful optimization methods with local-search
capabilities.

Chapter 2 was the gateway to niching, and treated a wide spectrum
of related topics. In particular, we deepened furthermore into the world
of Biology, exploring the topics of diversity and organic variations. We
turned from there back to the optimization arena, where we considered a
de�nition of the attraction basin, the part of the search landscape which
is equivalent to the ecological niche. We discussed the important issue of
population diversity within Evolution Strategies. Especially, we reviewed
previous research conducted on the loss of diversity in ES, due to two main
components: Selective pressure (take-over e�ect), and drift (neutral e�ects,
associated with both recombination and selection). We thus reached the
conclusion that an Evolution Strategy which employs a small population
will inevitably lose its population diversity.

At the same time, we presented calculations which suggested that ES
with small populations are subject to a so-called mutation drift. The latter
allows for easy translation of populations from one location to another, an
e�ect that has the potential to boost fast speciation. This observation thus
provided us with further motivation to apply niching with DES, algorithmic
variants which typically employ small populations.

This was followed by a survey of classical niching methods, mainly from
the GA �eld. We concluded this introductory chapter with postulating our
mission statement with respect to niching. In short, we argued that a niching
technique should attain the optimal interplay between the partitioning into
stable subpopulations and the exploitation of each niche by means of an
e�cient optimizer with local-search capabilities.

Armed with this mission statement, and motivated by various results
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suggesting that DES would be an attractive choice for algorithmic kernels
in a niching framework, we accepted upon ourselves the challenge. Chap-
ter 3, the core of Part I, introduced our proposed framework of niching in
derandomized-ES, subject to a �xed niche-radius approach. The framework
was inspired by biological concepts and by classical GA niching techniques.
In biological terms, the proposed algorithm was associated with a specia-
tion model of individual alpha-males. Following a detailed description of
our method, we outlined a testbed of arti�cial multimodal continuous land-
scapes. Upon the application of the proposed algorithm to the search of
minima in these landscapes, we analyzed the numerical observation with the
so-called MPR Analysis. The latter allowed us to derive parametric values
that typically de�ne the behavior of each DES variant as a niching kernel.
Our observation concluded that the CMA plus-strategy, which has the lowest
niching acceleration, performed better than the other DES variants. Our pro-
posed explanation for that considered the niching problem as a constrained
optimization problem, where a plus-strategy is argued to have an advantage
for ES.

Chapter 4 was a direct extension of Chapter 3, and it aimed at treat-
ing the niche radius problem. By employing the CMA algorithmic kernel,
we proposed two di�erent approaches for self-adaptation of niche-radii and
niche-shapes, based on step-size coupling and the application of the Maha-

lanobis distance, respectively. We tested the various proposed variants on
arti�cial multimodal landscapes, including landscapes with even and uneven
spread of optima. The performance was highly satisfying, and was investi-
gated by means of the MPR Analysis.

In Chapter 5 we introduced our niching framework into the multi-objective
arena. Our stated mission was to treat multi-global optimization problems.
More speci�cally, our goal was to boost diversity in the decision space, and
by doing so to o�er more choice in the typically con�icting decision making
process. We derived a multi-parent niching-CMA variant for that purpose,
and showed that the application to a speci�c set of multi-objective problems
required only mild algorithmic adjustments. The observed performance was
highly satisfying, and provided us with the desired proof of concept.

Chapter 6 was the gateway to Part II, reviewing the main topics of OCT
and OCE in the context of optimization. It outlined various important the-
oretical results, which concluded that controllable unconstrained quantum
systems have extrema that correspond to perfect control, or to no control
at all. Furthermore, perfect control could be typically obtained with only
�rst-order (gradient) information while climbing-up the QC landscape; At
the top of the landscape, there is an in�nite number of attainable optimal
points. Despite the fact that these results are valid for "perfect" theoretical
landscapes with no constraints, they play an important role in posing QC
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optimization problems, and in suggesting certain remarkable properties that
might be instantiated in practice. Some of the work reported here corrobo-
rated some of these properties.

Our practical work on Quantum Control systems began in Chapter 7,
where we considered two systems of two-photonic processes both in simu-
lations and in the laboratory. Upon analysis of pre-mature convergence of
DES variants on these landscapes, due to the unrestricted search employed
by them, we introduced the so-called wrapping operator into the ES frame-
work. The CMA outperformed the other algorithms on those landscapes,
even without using its second-order (covariance) information. We found
these results to be an experimental corroboration of the OCT landscape
analysis discussed in Chapter 6.

The quantum rotational framework, which constituted a considerable part
of our research, was treated in this study at several levels throughout Chap-
ters 8 and 9. Chapter 8 laid out the Quantum Mechanical foundations of the
rotational framework, and posed the so-called population transfer problem.
The latter was investigated by means of simulations at di�erent laser intensi-
ties, which revealed a rich landscape with a wide variety of optimal solutions.
Moreover, it was observed that the number of independent solutions critically
depends on the di�culty of the problem, determined by the laser intensity.
The study of the rotational population transfer problem was concluded with
the application of our niching algorithms. The latter required the de�nition
of a tailor-made distance metric, due to invariance properties of the control
phase function. The numerical simulations obtained good niching results,
where the elitist CMA kernel performed best. Due to the fact that the orig-
inal niche-radius calculation for this landscape failed in practice, as well to
the fact that the comma-strategies did not perform well on secondary optima,
we speculated that the introduction of a radius-based niching approach to
this landscape posed a highly-constrained optimization problem.

Last but not least, the dynamic molecular alignment problem was ex-
tensively investigated in Chapter 9. We began the chapter by providing the
motivation for obtaining molecular alignment, and then formally posed the
problem. Following a straightforward application of DES to the problem we
further approached it from multiple angles. We developed a parameteriza-
tion method, that was shown to boost the convergence of DES on the align-
ment landscape. Moreover, we introduced a simpli�ed variant of the original
alignment problem, at zero Kelvin temperature, which allowed an improved
investigation from the Physics perspective. The examination of certain DES
variants subject to speci�c parameterizations resulted in a fruitful study of
optimality, where two classes of solutions, optimal and sub-optimal, were
revealed. This optimality study also concluded that despite the consider-
able di�erence between the composition of the optimized wavepacket and
the maximally attainable wavepacket, the obtained yield in the optimization
was typically fairly close to the maximally attainable yield. This excellent
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behavior was explained by means of the variational principle.
We proceeded with optimizing the alignment problem subject to a dy-

namic intensity environment. This resulted in a new perspective on the
evolution of laser pulses, and con�rmed furthermore our understanding of
the optimal structures within laser pulses applied to this problem.

This was followed by the employment of a multi-criteria approach to
the alignment problem, while considering the minimization of the total sec-
ond harmonic generation signal as a secondary objective with respect to the
alignment yield objective. Due to the heavy computational cost of the sim-
ulator, we introduced the so-called Kriging Metamodel in order to boost our
calculations. This application con�rmed our suspicion of the existence of a
con�ict between the two objectives, which had been treated previously by
means of a penalty term.

Finally, we applied our niching algorithms to the alignment problem. By
following the tailor-made distance metric introduced in Chapter 8, our �rst
round of calculations obtained satisfying results. All the di�erent niches
represented, nevertheless, the same conceptual quantum design, as expected
from our previous investigation of optimality. Thus, we carried out a second
round of calculations, where the distance between the niches was measured
in the wavepacket space. The latter achieved the goal of removing the ob-
served degeneracy. We linked the failure of the originally calculated niche
radius to the compromised performance of the comma-strategy kernels on
the secondary niches, and ascribed both to the highly constrained nature of
the landscape when underposed to a �xed radius-based niching framework.

Upon concluding this study, the message that we would like to post is
three-fold. Firstly, we would like to encourage the application of niching
methods to high-dimensional real-world hard problems, for providing the
decision makers with the choice among several optimal or near-optimal so-
lutions. As was demonstrated here, the proposed niching framework with
DES kernels was capable of providing satisfying results on the investigated
Quantum Control landscapes. Furthermore, we showed that the employ-
ment of a domain-speci�c tailor-made diversity measure is possible, when
necessary. Secondly, we believe that the important multiple optima identi�-

cation task has not yet attracted the proper attention of the scientists in the
Evolutionary Computation community, and some would even claim that it
is often neglected. Therefore, we hope that a corresponding sub-community

within the EC community will emerge in the near future. Thirdly, we argue
that the �eld of Quantum Control is a highly attractive testbed for opti-
mization methods, as well as a rich arena of challenging open problems. As
such, it should enjoy the powerful capabilities of state-of-the-art Evolution-
ary approaches, at all possible levels: multi-criterion optimization, niching
techniques, optimization in environments with uncertainty, etc.
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Outlook

We believe that we compiled a genuine interdisciplinary study, with two
main contributing components: The �rst, the introduction of niching with
the powerful kernels of Derandomized ES variants to the arena of multimodal
function optimization, and the second, the introduction of Quantum Control
to state-of-the-art evolutionary approaches. We, nevertheless, believe that
there are still various directions for future research.

It would be interesting to further apply our proposed niching framework
to additional search landscapes, either arti�cial or from the real-world ap-
plications domain. In addition, the multi-globality goal in multi-objective
optimization could be further explored, by means of extended algorithmic
developments and by means of an application to practical optimization prob-
lems.

Another challenging direction would be the development of additional
niching frameworks with DES kernels which do not utilize a niche-radius
based approach. As devoted followers of the No Free Lunch Theorem,
we believe that there is always room for competing methods.

On the Quantum Control front, there are still many open research topics
that are related to our study. At the experimental level, it would obviously
be exciting to optimize in the laboratory the Dynamic Molecular Alignment.
These experiments are approaching count-down at Amolf-Amsterdam, upon
the completion of this dissertation.

On that note, Quantum Control Experiments introduce many possible
optimization topics for future research. Such topics are the investigation of
noise and its e�ect on algorithmic performance, robustness of obtained con-
trols, the application of niching as well as multi-criteria optimization in the
experimental learning-loop, and others.

By introducing these challenges we conclude this study, which hopefully
turned out to be an enjoyable natural computing experience for the reader.

We would like to end with the simple call: "keep it natural!".
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Additional Figures

We present here additional �gures in full-color format.
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Figure A.1: A snapshot gallery: The adaptation of the classi�cation-ellipses,
subject to the Mahalanobis metric with the updating covariance matrix, with
the CMA+ kernel on the 2D Fletcher-Powell problem. Images are taken in
the box [−π, π]2. Contours of the landscape are given as the background,
where the X's indicate the real optima, the dots are the evolving individuals,
and the ellipses are plotted centered about the peak individual. A snapshot is
taken every 4 generations (i.e., every 160 function evaluations), as indicated
by the counter.
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Figure A.2: A 3D-snapshot gallery: The adaptation of the classi�cation-

ellipses, subject to the Mahalanobis metric with the updating covariance
matrix, with the CMA+ kernel on the 3D Fletcher-Powell problem. Images
are taken in the box [−π, π]3. The ellipses are centered about the evolving
peak individuals. A snapshot is taken every 20 generations (i.e., every 800
function evaluations), as indicated by the counter.
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Figure A.3: A 3D-snapshot gallery: The adaptation of the classi�cation-

ellipses, subject to the Mahalanobis metric with the updating covariance
matrix, with the CMA+ kernel on the 3D Ackley problem. Images are
taken in the box [−2, 2]3. The ellipses are centered about the evolving peak
individuals, and are observed to adapt simultaneously. A snapshot is taken
every 25 generations (i.e., every 1750 function evaluations), as indicated by
the counter.
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Figure A.4: Population transfers from J = 0 to J = 4 obtained in 80 runs of
the DR2 algorithm with Ωge = 80×1012s−1 (top), along with the correlation
coe�cient between the solutions, as de�ned in Eq. 8.16 (bottom). The solu-
tions that perform best are highly correlated. Pixels in white correspond to
cross-correlation value of 1 (after rounding-o�).
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Figure A.5: Population transfers from J = 0 to J = 4 obtained in 80
runs of the DR2 algorithm with Ωge = 120 × 1012s−1 (top), along with the
correlation coe�cient between the solutions, as de�ned in Eq. 8.16 (bottom).
The solutions that perform well can be divided into a �nite group of solutions
that are highly correlated within the group but not with solutions outside
the group. Pixels in white correspond to cross-correlation value of 1 (after
rounding-o�).



210 Appendix A

Figure A.6: Population transfers from J = 0 to J = 4 obtained in 80 runs of
the DR2 algorithm with Ωge = 160×1012s−1 (top), along with the correlation
coe�cient between the solutions, as de�ned in Eq. 8.16 (bottom). Many
near-perfect solutions exist that are only weakly correlated to each other.
Pixels in white correspond to cross-correlation value of 1 (after rounding-
o�).
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Figure A.7: Contourplot of
⟨
cos2(θ)

⟩
as a function of A and ∆ as de�ned

in Eq. 9.6 for a peak Rabi frequency of Ωge = 180 · 1012s−1. The color
scale ranges from 0.3551 (blue) to 0.688 (red). Figure courtesy of Christian
Siedschlag [162].



212 Appendix A

Alignment and Revival Structure of two obtained solutions. Thin red line:
Alignment; Thick black line: Laser pulse intensity.

Figure A.8: A typical optimal solution, obtained by the DR2-plain; Align-
ment yield: < cos2 (θ) >= 0.9622.

Figure A.9: A typical sub-optimal solution, obtained by the CMA-plain: A
smooth exponential envelope of the revival structure is observed; Alignment
yield: < cos2 (θ) >= 0.9505.
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Sliding Window Fourier Transform applied to the revival structures of
obtained solutions (e.g., thin-red alignment curve of Figure A.8). The
values are log-scaled, and represent how high the rotational levels of the

molecules are populated as a function of the interaction time.

Figure A.10: DR2 with plain-parameterization: The 4th rotational level,
corresponding to J = 6, is mostly populated after the interaction.

Figure A.11: CMA with plain-parameterization: All �ve �rst rotational lev-
els are populated gradually after the interaction.
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Sliding Window Fourier Transform applied to the revival structures of
obtained solutions: continued.

Figure A.12: DR2 with Hermite-parameterization: The four �rst rotational
levels are populated gradually after the interaction.

Figure A.13: CMA with Hermite-parameterization: The 4th rotational level,
corresponding to J = 6, is mostly populated after the interaction.
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Attainment surfaces for the bi-criteria optimization of the Dynamic Molec-
ular Alignment problem.

Figure A.14: Left: 20% Attainment Surfaces; Right: zoom-in.

Figure A.15: Left: Median Attainment Surfaces; Right: zoom-in.

Figure A.16: Left: 80% Attainment Surfaces; Right: zoom-in.
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Niching for the Dynamic Molecular Alignment problem; Best-niche results:
Revival structure and the corresponding SWFT picture.

Figure A.17: Best niche: < cos2 (θ) >= 0.9524.

Figure A.18: SWFT picture of the best niche's solution.
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Niching for the Dynamic Molecular Alignment problem; 2nd-best niche
results: Revival structure and the corresponding SWFT picture.

Figure A.19: 2nd-best niche: < cos2 (θ) >= 0.9513.

Figure A.20: SWFT picture of the 2nd-best niche's solution.
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Niching for the Dynamic Molecular Alignment problem; 3rd-best niche
results: Revival structure and the corresponding SWFT picture.

Figure A.21: 3rd-best niche: < cos2 (θ) >= 0.9466.

Figure A.22: SWFT picture of the 3rd-best niche's solution.
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Niching in the wavepacket space; A typical best-niche: Revival structure
and the corresponding SWFT picture.

Figure A.23: Optimal niche:
⟨
cos2 (θ)

⟩
= 0.9596.

Figure A.24: Optimal niche: 4th rotational level, corresponding to J = 6, is
mostly populated after the interaction.
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Niching in the wavepacket space; A typical 2nd-best niche: Revival
structure and the corresponding SWFT picture.

Figure A.25: Sub-optimal niche:
⟨
cos2 (θ)

⟩
= 0.9472.

Figure A.26: Sub-optimal niche: 3rd rotational level, corresponding to J = 4,
is mostly populated after the interaction.
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Appendix B

Complete-Basis Functions

Here is a brief summary of the fundamental mathematical concepts be-
hind the Complete-Basis-Functions Parameterization, as presented in Sec-
tion 9.2.2. This part is mainly based on Abramowitz [173] and Kaplan [174].
Let f (x) be given in the interval a ≤ x ≤ b, and let

ξ1 (x) , ξ2 (x) , . . . , ξk (x) , . . . (B.1)

be functions which are all piecewise continuous in this interval.
The set {ξk (x)}∞k=1 is called complete if it can span any piecewise con-

tinuous function f (x), e.g.,

f (x) =
∞∑
k=1

ckξk (x) , (B.2)

where the coe�cients ck are given by:

ck =
1

Bk

∫ b

a
f (x) ξk (x) dx, Bk =

∫ b

a
[ξk (x)]

2 dx (B.3)

The convergence is guaranteed by the so-called completeness theorem. Ex-
plicitly, the series

Rm =

∫ b

a

(
f(x)−

m∑
k=1

ckξk (x)

)2

dx =

∫ b

a
(f(x)− Sm(x))2 dx (B.4)

converges to zero for su�ciently large m:

lim
m→∞

Rm = 0, (B.5)

where we denoted the sequence of partial sums as Sm(x):

Sm(x) =

m∑
k=1

ckξk (x) (B.6)
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By de�nition, the convergence of the series of functions is equivalent to the
convergence of Sm(x) to f(x):

lim
m→∞

Sm(x) = f(x) (B.7)

The Fourier (Trigonometric) Series

A trigonometric series is an expansion of a periodic function in terms of a
sum of sines and cosines, making use of the orthogonality property of the
harmonic functions. Without loss of generality, let us consider from now
on the interval [0, L]. Let f(x) be a single-valued function de�ned on that
interval, then its trigonometric series or trigonometric expansion is given by:

f̃(x) =
1

2
a0 +

∞∑
k=1

ak cos

(
2πk

L
· x
)
+

∞∑
k=1

bk sin

(
2πk

L
· x
)

(B.8)

If the coe�cients ak and bk satisfy certain conditions, then the series is called
a Fourier series.
If f(x) is periodic with period L, and has continuous �rst and second deriva-
tives for all x in the interval, it is guaranteed that the trigonometric series of
f(x) will converge uniformly to f(x) for all x; This is referred to as satisfying
the Dirichlet conditions. We shall refer in this study to the trigonometric

series as the Fourier series.

Other Sets of Functions

If one is indeed interested in periodic functions, there is no natural alternative
but using the trigonometric series. However, if one is concerned with other
representations of a general function over a given interval, a great variety of
other sets of functions is available, e.g.:

• Legendre polynomials , Pk(x):

Pk(x) =
(2k − 1)(2k − 3) · · · 1

k!

{
xk − k(k − 1)

2(k − 1)
xk−2+

+
k(k − 1)(k − 2)(k − 3)

2 · 4(2k − 1)(2k − 3)
xk−4 − · · ·

} (B.9)

which can also be de�ned via Rodrigues' formula:

P0(x) = 1 Pk(x) =
1

2kk!

dk

dxk
(
x2 − 1

)k
, k = 1, 2, . . . (B.10)

If f(x) satis�es the Dirichlet conditions mentioned earlier, then there
will exist a Legendre series expansion for it in the interval −1 < x < 1.
For illustration, the �rst 10 Legendre polynomials are plotted in Figure
B.1.
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Figure B.1: The First 10 Legendre Polynomials.

• Bessel Function of the First Kind and of Order l, Jl(x):

Jl(x) =

∞∑
k=0

(−1)k xl+2k

2l+2k · k! · Γ (l + k + 1)
(B.11)

with Γ(α) as de�ned in Eq. 1.36. Given a �xed l ≥ 0, the functions
{
√
x Jl (λlkx)}∞k=1 form an orthogonal complete system over the inter-

val 0 ≤ x ≤ 1.

• Hermite polynomials , Hk(x):

Hk(x) = (−1)k exp
{
x2
} dk

dxk
(
exp

{
−x2

})
, k = 0, 1, . . . (B.12)

The Hermite polynomials form a complete set of functions over the
in�nite interval −∞ < x < ∞, with respect to the weight function
exp

(
−1

2x
2
)
.

• Chebyshev polynomials of the First Kind , Tk(x):

Tk(x) =
k

2

⌊k/2⌋∑
r=0

(−1)r

k − r

(
k−r
r

)
(2x)k−2r , k = 0, 1, . . . (B.13)

The Chebyshev polynomials of the First Kind form a complete set of
functions over the interval [−1, 1] with respect to the weight function

1√
1−x2

.
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Higher Dimensions

An expansion by means of a complete set of functions can be generalized for
higher dimensions. For illustration, let us consider the two-dimensional case
of the trigonometric series. The functions cos(2πkL ·x)·cos(

2πl
L ·y), sin(

2πk
L ·x)·

cos(2πlL ·y), cos(
2πk
L ·x)·sin(

2πl
L ·y), and sin(2πkL ·x)·sin(

2πl
L ·y) form an orthonor-

mal complete system of functions in the box [(0, 0), (0, L), (L, 0), (L,L)].
Given a function in that domain, f(x, y), its expansion can then be writ-
ten in the form:

f(x, y) =

∞∑
k=0

∞∑
l=0

λkl ·
{
akl cos(

2πk

L
x) cos(

2πl

L
y)+

+bkl sin(
2πk

L
x) cos(

2πl

L
y) + ckl cos(

2πk

L
x) sin(

2πl

L
y)+

+dkl sin(
2πk

L
x) sin(

2πl

L
y)

} (B.14)

Corollary

An in�nite series of complete basis functions converges to any �reasonably
well behaving� function. Hence, it is straightforward to approximate a given
function with a �nite series of those functions, i.e., by cutting its tail from
a certain point. In principle, the sum Sm(x) (Eq. B.6) can always be found
to a desired degree of accuracy by adding up enough terms of the series.
For practical applications, the corollary is that every function can be ap-
proximated using a series of complete basis functions, to whatever desired
or practical accuracy. Moreover, this corollary can be easily generalized to
any desired dimension.



Bibliography

[1] T. Bäck, Evolutionary Algorithms in Theory and Practice. New York,
NY, USA: Oxford University Press, 1996.

[2] L. J. Fogel, Arti�cial Intelligence through Simulated Evolution. New
York, NY, USA: John Wiley, 1966.

[3] J. H. Holland, �Outline for a Logical Theory of Adaptive Systems,�
Journal of the ACM (JACM), vol. 9, no. 3, pp. 297�314, 1962.

[4] ��, Adaptation in Natural and Arti�cial Systems. Ann Arbor: The
University of Michigan Press, 1975.

[5] H.-P. Schwefel, Evolution and Optimum Seeking. New York, NY, USA:
John Wiley & Sons, Inc., 1995.

[6] I. Rechenberg, Evolutionsstrategies: Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Stuttgart, Germany:
Frommann-Holzboog Verlag, 1973.

[7] H.-G. Beyer and H.-P. Schwefel, �Evolution Strategies a Compre-
hensive Introduction,� Natural Computing: An International Journal,
vol. 1, no. 1, pp. 3�52, 2002.

[8] A. Törn and A. Zilinskas, Global Optimization, ser. Lecture Notes in
Computer Science. Springer, 1987, vol. 350.

[9] I. Zang and M. Avriel, �On Functions whose Local Minima are Global,�
JOTA, vol. 16, pp. 183�190, 1975.

[10] ��, �A Note on Functions whose Local Minima are Global,� JOTA,
vol. 18, pp. 556�559, 1976.

[11] D. Whitley, K. E. Mathias, S. B. Rana, and J. Dzubera, �Evaluating
Evolutionary Algorithms,� Arti�cial Intelligence, vol. 85, no. 1-2, pp.
245�276, 1996.

[12] T. Bäck, G. Rudolph, and H.-P. Schwefel, �Evolutionary Programming
and Evolution Strategies: Similarities and Di�erences,� in Proceedings

225



226

of the second Annual Conference on Evolutionary Programming. La
Jolla, CA, USA: Evolutionary Programming Society, 1993, pp. 11�22.

[13] H.-P. Schwefel, �Kybernetische Evolution als Strategie der experi-
mentellen Forschung in der Strömungstechnik,� Master's thesis, Tech-
nical University of Berlin, 1965.

[14] I. Rechenberg, �Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution,� Ph.D. dissertation, Tech-
nical University of Berlin, 1971.

[15] H.-G. Beyer, The Theory of Evolution Strategies. Heidelberg:
Springer, 2001.

[16] N. Hansen and A. Ostermeier, �Completely Derandomized Self-
Adaptation in Evolution Strategies,� Evolutionary Computation, vol. 9,
no. 2, pp. 159�195, 2001.

[17] C. Igel, T. Suttorp, and N. Hansen, �A Computational E�cient Co-
variance Matrix Update and a (1+1)-CMA for Evolution Strategies,�
in Proceedings of the Genetic and Evolutionary Computation Confer-

ence, GECCO 2006. New York, NY, USA: ACM Press, 2006, pp.
453�460.

[18] W. Gottschalk, Allgemeine Genetik. Stuttgart: Georg Thieme Verlag,
1989.

[19] H.-P. Schwefel, �Collective Phenomena in Evolutionary Systems,� in
Problems of Constancy and Change � The Complementarity of Systems

Approaches to Complexity, Proc. 31st Annual Meeting, P. Checkland
and I. Kiss, Eds., vol. 2. Budapest: Int'l Soc. for General System
Research, 1987, pp. 1025�1033.

[20] T. Bäck, U. Hammel, and H.-P. Schwefel, �Evolutionary Computation:
Comments on the History and Current State,� IEEE Transactions on

Evolutionary Computation, vol. 1, no. 1, pp. 3�17, 1997.

[21] H.-P. Schwefel, �Evolutionsstrategie und numerische Optimierung,�
Dr.-Ing. Thesis, Technical University of Berlin, Department of Pro-
cess Engineering, 1975.

[22] D. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Reading, MA: Addison Wesley, 1989.

[23] H.-G. Beyer, �An Alternative Explanation for the Manner in which
Genetic Algorithms Operate,� BioSystems, vol. 41, no. 1, pp. 1�15,
1997.



227

[24] G. Rudolph, �On Correlated Mutations in Evolution Strategies,� in
Parallel Problem Solving from Nature - PPSN II. Amsterdam: Else-
vier, 1992, pp. 105�114.

[25] A. Ostermeier, A. Gawelczyk, and N. Hansen, �A Derandomized Ap-
proach to Self Adaptation of Evolution Strategies,� Evolutionary Com-
putation, vol. 2, no. 4, pp. 369�380, 1994.

[26] ��, �A Derandomized Approach to Self Adaptation of Evolution
Strategies,� TU Berlin, Tech. Rep. TR-93-003, 1993.

[27] ��, �Step-Size Adaptation Based on Non-Local Use of Selection In-
formation,� in Parallel Problem Solving from Nature - PPSN III, ser.
Lecture Notes in Computer Science, vol. 866. Springer, 1994, pp.
189�198.

[28] N. Hansen, A. Ostermeier, and A. Gawelczyk, �On the Adaptation
of Arbitrary Normal Mutation Distributions in Evolution Strategies:
The Generating Set Adaptation,� in Proceedings of the Sixth Interna-

tional Conference on Genetic Algorithms (ICGA6). San Francisco,
CA: Morgan Kaufmann, 1995, pp. 57�64.

[29] N. Hansen and A. Ostermeier, �Adapting Arbitrary Normal Mutation
Distributions in Evolution Strategies: the Covariance Matrix Adap-
tation,� in Proceedings of the 1996 IEEE International Conference on

Evolutionary Computation. Piscataway, NJ: IEEE, 1996, pp. 312�317.

[30] D. Lindley, Introduction to Probability and Statistics from a Bayesian

Viewpoint: Inference. London, UK: Cambridge University Press,
1965, vol. 2.

[31] N. Hansen and S. Kern, �Evaluating the CMA Evolution Strategy on
Multimodal Test Functions,� in Parallel Problem Solving from Nature

- PPSN V, ser. Lecture Notes in Computer Science, vol. 1498. Ams-
terdam: Springer, 1998, pp. 282�291.

[32] H.-G. Beyer, �Toward a Theory of Evolution Strategies: On the Bene�t
of Sex - the (µ/muI , λ) Theory,� Evolutionary Computation, vol. 3,
no. 1, pp. 81�110, 1995.

[33] C. Igel, N. Hansen, and S. Roth, �Covariance Matrix Adaptation
for Multi-objective Optimization,� Evolutionary Computation, vol. 15,
no. 1, pp. 1�28, 2007.

[34] C. A. Coello Coello, �A Survey of Constraint Handling Techniques used
with Evolutionary Algorithms,� Laboratorio Nacional de Informática
Avanzada, Xalapa, Veracruz, México, Tech. Rep. Lania-RI-99-04, 1999.



228

[35] A. Auger and N. Hansen, �Performance Evaluation of an Advanced
Local Search Evolutionary Algorithm,� in Proceedings of the 2005

Congress on Evolutionary Computation CEC-2005. Piscataway, NJ,
USA: IEEE Press, 2005, pp. 1777�1784.

[36] T. Bäck, �Selective Pressure in Evolutionary Algorithms: A Charac-
terization of Selection Mechanisms,� in Proceedings of the First IEEE

Conference on Evolutionary Computation (ICEC'94), Orlando FL,
Z. Michalewicz, J. D. Scha�er, H.-P. Schwefel, D. B. Fogel, and H. Ki-
tano, Eds. Piscataway, NJ, USA: IEEE Press, 1994, pp. 57�62.

[37] S. Mahfoud, �Niching Methods for Genetic Algorithms,� Ph.D. disser-
tation, University of Illinois at Urbana Champaign, 1995.

[38] G. Avigad, A. Moshaiov, and N. Brauner, �Concept-Based Interactive
Brainstorming in Engineering Design,� Journal of Advanced Computa-

tional Intelligence and Intelligent Informatics, vol. 8, no. 5, pp. 454�
459, 2004.

[39] ��, �Interactive Concept-based Search using MOEA: The Hierarchi-
cal Preferences Case,� International Journal of Computational Intelli-
gence, vol. 2, no. 3, pp. 182�191, 2005.

[40] J. J. Cristiano, C. C. White, and J. K. Liker, �Application of Multiat-
tribute Decision Analysis to Quality Function Deployment for Target
Setting,� IEEE Transactions on Systems, Man, and Cybernetics: Part

C, vol. 31, no. 3, pp. 366�382, 2001.

[41] S. Freeman and J. C. Herron, Evolutionary Analysis. Redwood City,
CA, USA: Benjamin Cummings, 3rd Edition, 2003.

[42] C. R. Darwin, The Origin of Species: By Means of Natural Selection

or The Preservation of Favoured Races in the Struggle for Life. New
York, NY, USA: Bantam Classics, 1999.

[43] R. A. Fisher, �Darwinian Evolution of Mutations,� Eugenics Review,
vol. 14, pp. 31�34, 1922.

[44] S. Wright, �Evolution in Mendelian Populations,� Genetics, vol. 16,
pp. 97�159, 1931.

[45] M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge:
Cambridge University Press, 1983.

[46] S. M. Scheiner and C. J. Goodnight, �The Comparison of Phenotypic
Plasticity and Genetic Variation in Populations of the Grass Danthonia
Spicata,� Evolution, vol. 38, no. 4, pp. 845�855, 1984.



229

[47] A. Bradshaw, �Evolutionary Signi�cance of Phenotypic Plasticity in
Plants,� Advanced Genetics, vol. 13, pp. 115�155, 1965.

[48] B. A. McPheron, D. C. Smith, and S. H. Berlocher, �Genetic Di�er-
ences between Host Races of Rhagoletis Pomonella,� Nature, vol. 336,
pp. 64�66, 1988.

[49] K. Tsui, �An Overview of Taguchi Method and Newly Developed Sta-
tistical Methods for Robust Design,� IIE Transactions, vol. 24, pp.
44�57, 1992.

[50] M. Lunacek and D. Whitley, �The Dispersion Metric and the CMA
Evolution Strategy,� in Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO-2006. New York, NY, USA: ACM,
2006, pp. 477�484.

[51] J. Doye, R. Leary, M. Locatelli, and F. Schoen, �Global Optimization
of Morse Clusters by Potential Energy Transformations,� INFORMS,

Journal On Computing, vol. 16, no. 4, pp. 371�379, 2004.

[52] J. N. Kapur and H. K. Kesavan, Entropy Optimization Principles with

Applications. Harcourt Brace Jovanovich, 1992.

[53] S. Kullback and R. A. Leibler, �On Information and Su�ciency,� Ann.
Math. Stat., vol. 22, pp. 79�86, 1951.

[54] K. Deb and D. E. Goldberg, �An Investigation of Niche and Species
Formation in Genetic Function Optimization,� in Proceedings of the

third international conference on Genetic Algorithms. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1989, pp. 42�50.

[55] H.-G. Beyer, �On the Dynamics of GAs without Selection,� in Founda-

tions of Genetic Algorithms 5, W. Banzhaf and C. Reeves, Eds. San
Francisco, CA: Morgan Kaufmann, 1999, pp. 5�26.

[56] L. Schönemann, M. Emmerich, and M. Preuss, �On the Extiction
of Sub-Populations on Multimodal Landscapes,� in Proc. of the Int'l

Conf. on Bioinspired optimization Methods and their Applications,

BIOMA 2004. Joºef Stefan Institute, Slovenia, 2004, pp. 31�40.

[57] M. Preuss, L. Schönemann, and M. Emmerich, �Counteracting Genetic
Drift and Disruptive Recombination in (µ + /, λ)-EA on Multimodal
Fitness Landscapes,� in Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO 2005. New York, NY, USA: ACM
Press, 2005, pp. 865�872.

[58] H.-G. Beyer, E. Brucherseifer, W. Jakob, H. Pohlheim, B. Sendho�,
and T. B. To, �Evolutionary Algorithms - Terms and De�nitions,� http:
//ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/, 2002.



230

[59] M. Preuss, �Niching Prospects,� in Proc. of the Int'l Conf. on Bioin-

spired optimization Methods and their Applications, BIOMA 2006.
Joºef Stefan Institute, Slovenia, 2006, pp. 25�34.

[60] G. Singh and K. Deb, �Comparison of Multi-Modal Optimization Algo-
rithms based on Evolutionary Algorithms,� in Proceedings of the 2006

annual conference on Genetic and evolutionary computation, GECCO

2006. New York, NY, USA: ACM Press, 2006, pp. 1305�1312.

[61] D. E. Goldberg and J. Richardson, �Genetic algorithms with sharing
for multimodal function optimization,� in Proceedings of the Second

International Conference on Genetic Algorithms and Their Applica-

tion. Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc., 1987,
pp. 41�49.

[62] X. Yin and N. Germany, �A Fast Genetic Algorithm with Sharing using
Cluster Analysis Methods in Multimodal Function Optimization,� in
Proceedings of the International Conference on Articial Neural Nets

and Genetic Algorithms, Innsbruck, Austria, 1993. Springer, 1993,
pp. 450�457.

[63] M. Jelasity, �UEGO, an Abstract Niching Technique for Global Op-
timization,� in Parallel Problem Solving from Nature - PPSN V, ser.
Lecture Notes in Computer Science, vol. 1498. Amsterdam: Springer,
1998, pp. 378�387.

[64] B. Miller and M. Shaw, �Genetic Algorithms with Dynamic Niche
Sharing for Multimodal Function Optimization,� in Proceedings of

the 1996 IEEE International Conference on Evolutionary Computa-

tion (ICEC'96), New York, NY, USA, 1996, pp. 786�791.

[65] A. Petrowski, �A Clearing Procedure as a Niching Method for Genetic
Algorithms,� in Proceedings of the 1996 IEEE International Conference

on Evolutionary Computation (ICEC'96), New York, NY, USA, 1996,
pp. 798�803.

[66] A. D. Cioppa, C. D. Stefano, and A. Marcelli, �On the Role of Popu-
lation Size and Niche Radius in Fitness Sharing,� IEEE Transactions

on Evolutionary Computation, vol. 8, no. 6, pp. 580�592, 2004.

[67] K. A. de Jong, �An Analysis of the Behavior of a Class of Genetic
Adaptive Systems,� Ph.D. dissertation, University of Michigan, Ann
Arbor, 1975.

[68] K. Deb and S. Tiwari, �Omni-optimizer: A Procedure for Single and
Multi-objective Optimization,� in Evolutionary Multi-Criterion Op-

timization, Third International Conference, EMO 2005, ser. Lecture
Notes in Computer Science, vol. 3410. Springer, 2005, pp. 47�61.



231

[69] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
NJ, USA: Prentice Hall, 1999.

[70] V. Hanagandi and M. Nikolaou, �A Hybrid Approach to Global Op-
timization using a Clustering Algorithm in a Genetic Search Frame-
work,� Computers and Chemical Engineering, vol. 22, no. 12, pp. 1913�
1925, 1998.

[71] J. Branke, Evolutionary Optimization in Dynamic Environments. Nor-
well, MA, USA: Kluwer Academic Publishers, 2001.

[72] J. Gan and K. Warwick, �Dynamic Niche Clustering: A Fuzzy
Variable Radius Niching Technique for Multimodal Optimisation in
GAs,� in Proceedings of the 2001 Congress on Evolutionary Compu-

tation CEC2001. COEX, World Trade Center, 159 Samseong-dong,
Gangnam-gu, Seoul, Korea: IEEE Press, 2001, pp. 215�222.

[73] O. Aichholzer, F. Aurenhammer, B. Brandtstätter, T. Ebner,
H. Krammer, and C. Magele, �Niching Evolution Strategy with Clus-
ter Algorithms,� in Proceedings of the 9th Biennial IEEE Conference

on Electromagnetic Field Computations. IEEE Press, 2000, p. 137.

[74] F. Streichert, G. Stein, H. Ulmer, and A. Zell, �A Clustering Based
Niching EA for Multimodal Search Spaces,� in Proceedings of the Inter-
national Conference Evolution Arti�cielle, ser. Lecture Notes in Com-
puter Science, vol. 2936. Springer, 2003, pp. 293�304.

[75] S. Ando, J. Sakuma, and S. Kobayashi, �Adaptive Isolation Model us-
ing Data Clustering for Multimodal Function Optimization,� in Pro-

ceedings of the 2005 conference on Genetic and evolutionary compu-

tation, GECCO 2005. New York, NY, USA: ACM Press, 2005, pp.
1417�1424.

[76] H. Ramalhinho-Lourenco, O. C. Martin, and T. Stützle, �Iterated Lo-
cal Search,� Department of Economics and Business, Universitat Pom-
peu Fabra, Economics Working Papers 513, Nov. 2000.

[77] A. Auger and N. Hansen, �A Restart CMA Evolution Strategy With
Increasing Population Size,� in Proceedings of the 2005 Congress on

Evolutionary Computation CEC-2005. Piscataway, NJ, USA: IEEE
Press, 2005, pp. 1769�1776.

[78] D. Beasley, D. R. Bull, and R. R. Martin, �A Sequential Niche Tech-
nique for Multimodal Function Optimization,� Evolutionary Compu-

tation, vol. 1, no. 2, pp. 101�125, 1993.



232

[79] P. B. Grosso, �Computer Simulations of Genetic Adaptation: Parallel
Subcomponent Interaction in a Multilocus Model,� Ph.D. dissertation,
University of Michigan, Ann Arbor, MI, USA, 1985.

[80] P. Adamidis, �Review of Parallel Genetic Algorithms Bibliography,�
Automation and Robotics Lab., Dept. of Electrical and Computer
Eng., Aristotle University of Thessaloniki, Greece, Tech. Rep., 1994.

[81] W. Martin, J. Lienig, and J. Cohoon, �Island (Migration) Models: Evo-
lutionary Algorithms based on Punctuated Equilibria,� in Handbook of

Evolutionary Computation, T. Bäck, D. B. Fogel, and Z. Michalewicz,
Eds. Oxford University Press, New York, and Institute of Physics
Publ., Bristol, 1997, pp. C6.3:1�16.

[82] W. M. Spears, �Simple Subpopulation Schemes,� in Proceedings of the

3rd Annual Conference on Evolutionary Programming. World Scien-
ti�c, 1994, pp. 296�307.

[83] K. Deb and W. M. Spears, �Speciation Methods,� in The Handbook

of Evolutionary Computation, T. Bäck, D. Fogel, and Z. Michalewicz,
Eds. IOP Publishing and Oxford University Press, 1997.

[84] R. K. Ursem, �Multinational Evolutionary Algorithms,� in Proceed-

ings of the 1999 Congress on Evolutionary Computation (CEC 1999).
Piscataway NJ: IEEE Press, 1999, pp. 1633�1640.

[85] C. Stoean, M. Preuss, R. Gorunescu, and D. Dumitrescu, �Elitist Gen-
erational Genetic Chromodynamics - a New Radii-Based Evolutionary
Algorithm for Multimodal Optimization,� in Proceedings of the 2005

Congress on Evolutionary Computation (CEC'05). Piscataway NJ:
IEEE Press, 2005, pp. 1839�1846.

[86] R. E. Smith and C. Bonacina, �Mating Restriction and Niching Pres-
sure: Results from Agents and Implications for General EC,� in Pro-

ceedings of the 2003 Conference on Genetic and Evolutionary Compu-

tation, GECCO 2003, ser. Lecture Notes on Computer Science, vol.
2724. Chicago: Springer-Verlag, 2003, pp. 1382�1393.

[87] O. Kramer and H.-P. Schwefel, �On Three New Approaches to Han-
dle Constraints within Evolution Strategies,� Natural Computing: An
International Journal, vol. 5, no. 4, pp. 363�385, 2006.

[88] O. M. Shir and T. Bäck, �Niching in Evolution Strategies,� LIACS,
Leiden University, Tech. Rep. TR-2005-01, 2005.

[89] ��, �Niching in Evolution Strategies,� in Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO-2005. New York,
NY, USA: ACM Press, 2005, pp. 915�916.



233

[90] ��, �Dynamic Niching in Evolution Strategies with Covariance Ma-
trix Adaptation,� in Proceedings of the 2005 Congress on Evolutionary

Computation CEC-2005. Piscataway, NJ, USA: IEEE Press, 2005,
pp. 2584�2591.

[91] S. W. Mahfoud, �A Comparison of Parallel and Sequential Niching
Methods,� in Proceedings of the Sixth International Conference on Ge-

netic Algorithms, L. Eshelman, Ed. San Francisco, CA: Morgan Kauf-
mann, 1995, pp. 136�143.

[92] N. Hansen, A. Gawelczyk, and A. Ostermeier, �Sizing the Population
with respect to the Local Progress in (1, λ)-Evolution Strategies - A
Theoretical Analysis,� in Proceedings of the 1995 IEEE International

Conference on Evolutionary Computation. New York, NY, USA:
IEEE, 1995, pp. 312�317.

[93] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen,
A. Auger, and S. Tiwari, �Problem De�nitions and Evaluation Cri-
teria for the CEC 2005 Special Session on Real-Parameter Optimiza-
tion,� http://www.ntu.edu.sg/home/EPNSugan/, Nanyang Techno-
logical University, Singapore, Tech. Rep., 2005.

[94] O. M. Shir, �Niching in Evolution Strategies,� Master's thesis, Leiden
University, 2005.

[95] C. Stoean, M. Preuss, R. Stoean, and D. Dumitrescu, �Disburden-
ing the Species Conservation Evolutionary Algorithm of Arguing with
Radii,� in Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO 2007. New York, NY, USA: ACM Press, 2007,
pp. 1420�1427.

[96] P. Giorgi, C.-P. Jeannerod, and G. Villard, �On the Complexity of
Polynomial Matrix Computations,� in ISSAC '03: Proceedings of the

2003 international symposium on Symbolic and algebraic computation.
New York, NY, USA: ACM Press, 2003, pp. 135�142.

[97] M. Ehrgott, Multicriteria Optimization, 2nd ed. Berlin: Springer,
2005.

[98] E. Zitzler, �Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications,� Ph.D. dissertation, ETH Zurich, Switzer-
land, 1999.

[99] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
New York: Wiley, 2001.



234

[100] M. Emmerich, N. Beume, and B. Naujoks, �An EMO Algorithm us-
ing the Hypervolume Measure as Selection Criterion,� in Proc. Evo-

lutionary Multi-Criterion Optimization: Third Int'l Conference (EMO

2005), ser. Lecture Notes in Computer Science, vol. 3410. Berlin:
Springer, 2005, pp. 62�76.

[101] M. Emmerich, �Single- and Multi-objective Evolutionary Design Op-
timization Assisted by Gaussian Random Field Metamodels,� Ph.D.
dissertation, University of Dortmund, Germany, 2005.

[102] G. Rudolph, B. Naujoks, and M. Preuss, �Capabilities of EMOA to
Detect and Preserve Equivalent Pareto Subsets,� in Proc. Evolutionary
Multi-Criterion Optimization: Fourth Int'l Conference (EMO 2007),
ser. Lecture Notes in Computer Science, vol. 4403. Berlin: Springer,
2007, pp. 36�50.

[103] J. Horn, N. Nafpliotis, and D. E. Goldberg, �A Niched Pareto Ge-
netic Algorithm for Multiobjective Optimization,� in Proceedings of

the First IEEE Conference on Evolutionary Computation, IEEE World

Congress on Computational Intelligence. Piscataway, New Jersey:
IEEE Service Center, 1994, pp. 82�87.

[104] A. To�olo and E. Benini, �Genetic Diversity as an Objective in
Multi-Objective Evolutionary Algorithms,� Evolutionary Computa-

tion, vol. 11, no. 2, pp. 151�167, 2003.

[105] E. Zitzler, K. Deb, and L. Thiele, �Comparison of Multiobjective Evo-
lutionary Algorithms: Empirical Results,� Evolutionary Computation,
vol. 8, no. 2, pp. 173�195, 2000.

[106] T. Bäck, �Self-Adaptation,� in Handbook of Evolutionary Computation,
T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. Oxford University
Press, New York, and Institute of Physics Publ., Bristol, 1997, pp.
C7.1:1�15.

[107] D. Büche, S. D. Müller, and P. Koumoutsakos, �Self-Adaptation for
Multi-objective Evolutionary Algorithms,� in EMO, ser. Lecture Notes
in Computer Science, vol. 2632. Springer, 2003, pp. 267�281.

[108] J.-W. Klinkenberg, M. Emmerich, A. Deutz, O. M. Shir, and T. Bäck,
�Accelerating SMS-EMOA for Problems with Time-Expensive Evalu-
ations using Kriging, Self-Adaptation, and MPI,� in Multiple Criteria

Decision Making for Sustainable Energy and Transportation Systems:

Proceedings of MCDM 2008, The 19th International Conference on

Multiple Criteria Decision Making, ser. Lecture Notes in Economics
and Mathematical Systems, vol. 634. Heidelberg, Germany: Springer
Physica-Verlag, 2010, pp. 301�312.



235

[109] M. Preuss, B. Naujoks, and G. Rudolph, �Pareto Set and EMOA Be-
havior for Simple Multimodal Multiobjective Functions,� in Parallel

Problem Solving from Nature, PPSN IX, ser. Lecture Notes in Com-
puter Science, vol. 4193. Springer, 2006, pp. 513�522.

[110] M. Emmerich and A. Deutz, �Test Problems Based on Lamé Super-
spheres,� in EMO-2007, ser. Lecture Notes in Computer Science, vol.
4403. Springer, 2007, pp. 922�936.

[111] D. Tannor and S. Rice, �Control of Selectivity of Chemical Reaction
via Control of Wave Packet Evolution,� Chem. Phys., vol. 83, 1985.

[112] P. Brumer and M. Shapiro, �Control of Unimolecular Reactions using
Coherent Light,� Chem. Phys. Lett., vol. 126, no. 6, 1986.

[113] R. S. Judson and H. Rabitz, �Teaching Lasers to Control Molecules,�
Phys. Rev. Lett., vol. 68, no. 10, pp. 1500�1503, Mar 1992.

[114] W. S. Warren, H. Rabitz, and M. Dahleh, �Coherent Control of Quan-
tum Dynamics: The Dream Is Alive,� Science, vol. 259, pp. 1581�1589,
Mar 1993.

[115] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, �Whither
the Future of Controlling Quantum Phenomena?� Science, vol. 288,
pp. 824�828, May 2000.

[116] P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, �Femtosecond
Quantum Control of Molecular Dynamics in the Condensed Phase,�
Phys Chem Chem Phys., vol. 9, no. 20, pp. 2470�2497, 2007.

[117] C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M.
Weber, and W. S. Warren, �Feedback Quantum Control of Molecular
Electronic Population Transfer,� Chem. Phys. Lett., vol. 280, no. 1-2,
1997.

[118] T. Weinacht, J. Ahn, and P. Bucksbaum, �Controlling the Shape of a
Quantum Wavefunction,� Nature, vol. 397, no. 233, 1999.

[119] D. Zeidler, S. Frey, W. Wohlleben, M. Motzkus, F. Busch, T. Chen,
W. Kiefer, and A. Materny, �Optimal Control of Ground-State Dy-
namics in Polymers,� Chem. Phys., vol. 116, no. 12, Mar 2002.

[120] R. Levis, G. M. Menkir, and H. Rabitz, �Selective Bond Dissocia-
tion and Rearrangement with Optimally Tailored, Strong-Field Laser
Pulses,� Science, vol. 292, pp. 709�713, Apr 2001.

[121] T. Brixner and G. Gerber, �Femtosecond Polarization Pulse Shaping,�
Opt. Lett., vol. 26, no. 8, pp. 557�559, 2001.



236

[122] J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and
U. Keller, �Adaptive Feedback Control of Ultrafast Semiconductor
Nonlinearities,� Appl. Phys. Lett., vol. 77, no. 7, 2000.

[123] J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus,
�Quantum Control of Energy Flow in Light Harvesting,� Nature, vol.
417, no. 533, 2002.

[124] A. P. Peirce, M. A. Dahleh, and H. Rabitz, �Optimal Control of
Quantum-Mechanical Systems: Existence, Numerical Approximation,
and Applications,� Phys. Rev. A, vol. 37, no. 12, Jun 1988.

[125] S. Shi and H. Rabitz, �Quantum Mechanical Optimal Control of Phys-
ical Observables in Microsystems,� Chem. Phys., vol. 92, no. 364, Jan
1990.

[126] F. Schwabl, Quantum Mechanics. Berlin: Springer, 2002.

[127] T.-S. Ho and H. Rabitz, �Why do E�ective Quantum Controls Ap-
pear Easy to Find?� Journal of Photochemistry and Photobiology A:

Chemistry, vol. 180, no. 3, Jun 2006.

[128] R. Chakrabarti and H. Rabitz, �Quantum Control Landscapes,� Inter-
national Reviews in Physical Chemistry, vol. 26, no. 4, pp. 671�735,
2007.

[129] H. Rabitz, M. M. Hsieh, and C. M. Rosenthal, �Quantum Optimally
Controlled Transition Landscapes,� Science, vol. 303, pp. 1998�2001,
Mar 2004.

[130] H. Rabitz, T.-S. Ho, M. Hsieh, R. Kosut, and M. Demiralp, �The
Topology of Optimally Controlled Quantum Mechanical Transition
Probability Landscapes,� Phys. Rev. A, vol. 74, no. 1, p. 012721, July
2006.

[131] M. Demiralp and H. Rabitz, �Optimally Controlled Quantum Molecu-
lar Dynamics: A Perturbation Formulation and the Existence of Mul-
tiple Solutions,� Phys. Rev. A, vol. 47, no. 2, pp. 809�816, Feb 1993.

[132] ��, �Optimally Controlled Quantum Molecular Dynamics: The Ef-
fect of Nonlinearities on the Magnitude and Multiplicity of Control-
Field Solutions,� Phys. Rev. A, vol. 47, no. 2, pp. 831�837, Feb 1993.

[133] A. Rothman, T.-S. Ho, and H. Rabitz, �Observable-Preserving Control
of Quantum Dynamics over a Family of Related Systems,� Phys. Rev.
A, vol. 72, no. 2, p. 023416, 2005.

[134] ��, �Exploring the Level Sets of Quantum Control Landscapes,�
Phys. Rev. A, vol. 73, no. 5, p. 053401, 2006.



237

[135] R. Chakrabarti, R. Wu, and H. Rabitz, �Computational Complexity
of Quantum Optimal Control Landscapes,� 2007, to be submitted.

[136] H. T. Siegelmann, A. Ben-Hur, and S. Fishman, �Computational Com-
plexity for Continuous Time Dynamics,� Phys. Rev. Lett., vol. 83, no. 7,
pp. 1463�1466, Aug 1999.

[137] T. C. Weinacht and P. H. Bucksbaum, �Using Feedback for Coherent
Control of Quantum Systems,� Journal of Optics B, vol. 4, no. 3, 2002.

[138] M. Shapiro and P. Brumer, �Coherent Control of Atomic, Molecular,
and Electronic Processes,� Advances in Atomic, Molecular, and Optical

Physics, vol. 42, no. 287, 2000.

[139] R. Koslo�, S. Rice, P. Gaspard, S. Tersigni, and D. Tannor,
�Wavepacket Dancing: Achieving Chemical Selectivity by Shaping
Light Pulses,� Chem. Phys., vol. 139, 1989.

[140] M. Roth, �Optimal Dynamic Discrimination in the Laboratory,� Ph.D.
dissertation, Princeton University, 2007.

[141] J. Vaughan, T. Feurer, K. Stone, and K. Nelson, �Analysis of Replica
Pulses in Femtosecond Pulse Shaping with Pixelated Devices,� Optics
Express, vol. 14, no. 3, pp. 1314�1328, 2006.

[142] R. Bracewell, The Fourier Transform and Its Applications. McGraw-
Hill Book Company, 1965.

[143] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C, 2nd ed. Cambridge, UK: Cambridge University Press,
1992.

[144] D. Meshulach and Y. Silberberg, �Coherent Quantum Control of Two-
Photon Transitions by a Femtosecond Laser Pulse,� Nature, vol. 396,
no. 239, 1998.

[145] ��, �Coherent Quantum Control of Multiphoton Transitions by
Shaped Ultrashort Optical Pulses,� Phys. Rev. A, vol. 60, no. 2, 1999.

[146] J. Roslund, M. Roth, and H. Rabitz, �Laboratory Observation of
Quantum Control Level Sets,� Phys. Rev. A, vol. 74, no. 4, p. 043414,
2006.

[147] O. M. Shir and T. Bäck, �The Second Harmonic Generation Case Study
as a Gateway for ES to Quantum Control Problems,� in Proceedings of

the Genetic and Evolutionary Computation Conference, GECCO-2007.
New York, NY, USA: ACM Press, 2007, pp. 713�721.



238

[148] O. M. Shir, J. N. Kok, M. J. Vrakking, and T. Bäck, �Gaining In-
sight into Laser Pulse Shaping by Evolution Strategies,� in Proceedings

of IWINAC-2007, ser. Lecture Notes in Computer Science, vol. 4527.
Springer, 2007, pp. 467�477.

[149] D. V. Arnold and H.-G. Beyer, �Local Performance of the (µ/µI , λ)-
ES in a Noisy Environment,� in Foundations of Genetic Algorithms, 6,
W. Martin and W. Spears, Eds. San Francisco, CA: Morgan Kauf-
mann, 2001, pp. 127�141.

[150] D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, �Evolutionary
Algorithms and their Application to Optimal Control Studies,� Phys.
Rev. A, vol. 64, no. 2, p. 023420, Jul 2001.

[151] R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and
J. L. Herek, �Evolution Strategies for Laser Pulse Compression,� in
Proceedings of the International Conference Evolution Arti�cielle, ser.
Lecture Notes in Computer Science, vol. 4926. Springer, 2008, pp.
219�230.

[152] V. Beltrani, �Frequency Shaping and the Alignment Problem,� Prince-
ton University, Princeton NJ, USA, Tech. Rep., 2008.

[153] F. Rosca-Pruna and M. J. Vrakking, �Revival Structures in Picosec-
ond Laser-Induced Alignment of I2 Molecules,� Journal of Chemical

Physics, vol. 116, no. 15, pp. 6579�6588, 2002.

[154] H. Stapelfeldt and T. Seideman, �Colloquium: Aligning Molecules with
Strong Laser Pulses,� Rev. Mod. Phys., vol. 75, no. 2, pp. 543�557, Apr
2003.

[155] B. Friedrich and D. Herschbach, �Steric Pro�ciency of Polar 2-Sigma
Molecules in Congruent Electric and Magnetic Fields,� Phys. Chem.

Chem. Phys., vol. 2, pp. 419�428, 2000.

[156] N. Hay, R. Velotta, M. Lein, R. de Nalda, E. Heesel, M. Castillejo, and
J. P. Marangos, �High-Order Harmonic Generation in Laser-Aligned
Molecules,� Phys. Rev. A, vol. 65, no. 5, p. 053805, Apr 2002.

[157] T. Seideman, �Revival Structure of Aligned Rotational Wave Packets,�
Phys. Rev. Lett., vol. 83, no. 24, pp. 4971�4974, Dec 1999.

[158] M. Leibscher, I. S. Averbukh, and H. Rabitz, �Molecular Alignment
by Trains of Short Laser Pulses,� Phys. Rev. Lett., vol. 90, no. 21, p.
213001, May 2003.

[159] ��, �Enhanced Molecular Alignment by Short Laser Pulses,� Phys.
Rev. A, vol. 69, no. 1, p. 013402, 2004.



239

[160] C. M. Dion, A. Keller, and O. Atabek, �Optimally Controlled Field-
Free Orientation of the Kicked Molecule,� Phys. Rev. A, vol. 72, no. 2,
p. 023402, 2005.

[161] K.-S. Leung and Y. Liang, �Evolution Strategies with a Fourier Series
Auxiliary Function for Di�cult Function Optimization,� in IDEAL,
ser. Lecture Notes in Computer Science, vol. 2690. Springer, 2003,
pp. 303�312.

[162] C. Siedschlag, O. M. Shir, T. Bäck, and M. J. J. Vrakking, �Evolution-
ary Algorithms in the Optimization of Dynamic Molecular Alignment,�
Optics Communications, vol. 264, pp. 511�518, Aug 2006.

[163] A. Mitra and H. Rabitz, �Mechanistic Analysis of Optimal Dynamic
Discrimination of Similar Quantum Systems,� J. Phys. Chem. A., vol.
108, p. 4778, 2004.

[164] T. Bäck, �On the Behavior of Evolutionary Algorithms in Dynamic
Environments,� in Proceedings of the 1998 International Conference on
Evolutionary Computation (ICEC'98). Piscataway, NJ, USA: IEEE
Press, 1998, pp. 446�451.

[165] L. Schönemann, �Optimal Number of Evolution Strategies Mutation
Step Sizes in Dynamic Environments,� in Proceedings of the 2005 con-

ference on Genetic and evolutionary computation, GECCO 2005. New
York, NY, USA: ACM Press, 2005, pp. 923�924.

[166] D. V. Arnold and H.-G. Beyer, �Random Dynamics Optimum Tracking
with Evolution Strategies,� in Parallel Problem Solving from Nature -

PPSN VII, ser. Lecture Notes in Computer Science, vol. 2439. Berlin:
Springer, 2002, pp. 3�12.

[167] A. Ratle, �Accelerating the Convergence of Evolutionary Algorithms
by Fitness Landscape Approximations,� in Parallel Problem Solving by

Nature - PPSN V, ser. Lecture Notes in Computer Science. Berlin:
Springer-Verlag, 1998, pp. 87�96.

[168] M. El-Beltagy, P. Nair, and A. Keane, �Metamodelling Techniques
for Evolutionary Optimisation of Computationally Expensive Prob-
lems: Promises and Limitations,� in Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO-1999, W. Banzhaf,
J. Daida, A. Eiben, M. Garzon, V. Honavar, M. Jakiela, and R. Smith,
Eds. Morgan Kaufman, 1999, pp. 196�203.

[169] M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, and K. Giannakoglou,
�Metamodel-Assisted Evolution Strategies,� in Parallel Problem Solv-

ing from Nature - PPSN VII, ser. Lecture Notes in Computer Science,
vol. 2439. Berlin: Springer, 2002, pp. 361�370.



240

[170] M. Emmerich, �A Rigorous Analysis of Two Bi-Criteria Problem Fam-
ilies with Scalable Curvature of the Pareto Fronts,� Leiden University,
Tech. Rep., 2005.

[171] M. Emmerich, K. Giannakoglou, and B. Naujoks, �Single- and Mul-
tiobjective Evolutionary Optimization Assisted by Gaussian Random
Field Metamodels,� IEEE Transactions on Evolutionary Computation,
vol. 10, no. 4, pp. 421�440, August 2006.

[172] K. Deb, M. Mohan, and S. Mishra, �A Fast Multiobjective Evolu-
tionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions,�
KanGAL, Kanpur, India, Tech. Rep. 2003002, 2003.

[173] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions.
National Bureau of Standards, Applied Math. Series 55, Dover Publi-
cations, 1965.

[174] W. Kaplan, Advanced Calculus, 3rd ed. Reading, MA, USA: Addison-
Wesley, 1983.



Index

alpha-male, 59, 75

basin of attraction, 38

conceptual designs, 33
condition number, 9
convergence rate, 12
covariance matrix, 15
crowding, 50

D-MORPH, 114
Dyson's time-ordering operator, 108

entropy, 40
ES derandomization, 20

�rst level, 22
second level, 24

Evolution Strategies, 11
(1 + 1)-ES, 12
1/5th-success rule, 12
correlated mutations, 16
self-adaptation, 13

�tness sharing, 48

genetic drift, 34
global minimum, 8
global optimization, 7

Hessian matrix, 9

ill-conditioned problems, 9
impulsive alignment, 151

Kriging, 186

level sets, 8, 39, 113
local minimum, 8

Mahalanobis distance, 77
mating restriction, 54
maximum peak ratio (MPR), 63, 80
multimodal landscape, 8
mutation drift, 45

niche, 34
niche capacity, 34, 50, 58
niche radius, 48, 60, 71, 97, 147, 193

organic diversity, 35

pendular state, 151
plasticity, 37
population size, 19, 29, 59, 95

Quantum Control, 107
complexity, 115
controllability, 112
Hamiltonian, 108
landscape, 108, 114

Rabi frequency, 140
revival time, 152

Schrödinger's equation, 108, 140, 141
second harmonic generation, 125

�ltered, 128
total, 126

separability, 9, 61, 130
speciation, 37
species, 34

takeover time, 42

uncertainty principle, 118, 151
unimodal landscape, 8

variational principle, 170
von Neumann equation, 110

241





Samenvatting (Dutch)

Op alle niveaus van het dagelijks leven word je regelmatig geconfronteerd met
systemen die in hun natuurlijke omgeving functioneren en daarbij een zekere
mate van optimaal gedrag vertonen. Zulk optimaal gedrag vormt hierdoor
een belangrijke inspiratiebron voor allerlei gebieden. Binnen het vakgebied
Natural Computing is het de bedoeling berekeningstechnieken te ontwikke-
len die zo goed mogelijk gebundelde verschijnselen uit de natuur benaderen,
op basis waarvan deze technieken op hun beurt vaak heel goed presteren in
informatieverwerkingsprocessen. Uit een lange lijst van natural-computing-
deelgebieden zijn we in het bijzonder geïnteresseerd geraakt in het uitermate
boeiende gebied van Organic Evolution - Organische Evolutie - en in zijn
rekentegenhanger, het zogenoemde gebied van de Evolutionaire Algorith-
men (EA). Door een optimalisatieprobleem naar een kunstmatig-biologische
omgeving om te zetten, benaderen EA inderdaad bepaalde stukjes uit de
Darwinistisch dynamica en streven die EA er daarbij naar, goed passende
oplossingen te bereiken in termen van de probleemsituatie. Daarbij is een
populatie van mogelijke oplossingen onderhevig aan kunstmatige, dat wil
zeggen gesimuleerde variatie. Vervolgens overleven zulke mogelijke oplossin-
gen een dergelijke simulatie op basis van concrete criteria voortvloeiend uit
het gekozen selectiemechanisme.

De oorspronkelijke bedoeling van ons onderzoek was om bepaalde vari-
anten van EA, Evolutionaire Strategieën geheten (ES), uit te breiden naar
deelpopulaties van pilot-oplossingen die parallel toegroeien naar verschillende
oplossingen van het probleem. Dit idee is gebaseerd op een begrip uit de evo-
lutietheorie, organic speciation, de organisch-evolutionaire ontwikkeling per
soort. Waar het hier op neer komt is, dat de manier van denken binnen
Natural Computing dieper dient in te gaan op theorieën uit de Evolution-
aire Biologie en in het licht van de gewenste evolutionaire soortontwikkeling
creatieve oplossingen dient te vinden voor de kunstmatige populatie. De
zogenoemde Niche-technieken vormen de uitbreiding van EA naar deelpopu-
laties met ieder hun eigen evolutionaire ontwikkeling. Zij zijn al bestudeerd
vanaf het begin van de EA en wel voornamelijk binnen de populaire variant
van de Genetisch Algorithmen (GA). Naast de theoretische uitdaging om
zulke technieken te ontwerpen, daarbij krachtig ondersteund door biologie-
geinspireerde motivatie, zijn er ook goede gronden vanuit de praktijk om
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dit te proberen. Met name vanuit het vakgebied van de besliskunde, dat
al rechtstreeks baat heeft bij de opkomst van het gebied van globale opti-
malizering, wordt duidelijk dat er dringend behoefte is aan meervoudigheid
van verschillende optimale oplossingen. In een ideaal geval zullen deze meer-
voudige oplossingen, zoals verkregen uit de optimalisatie-aanpak, onderling
een hoge mate van diversiteit vertonen en zullen zij verschillende conceptuele
ontwerpen voor oplossingen vertegenwoordigen.

Terwijl we de bedoeling hadden dit onderzoek voornamelijk te richten
op niche-technieken in ES, waren we er tevens vanaf het begin op uit de
algorithmes waar we op uit zouden komen, te gebruiken voor praktische
toepassingen in het pas ontsloten gebied van Quantum Control (QC). Dit
laatste biedt een enorme verscheidenheid aan veel-dimensionale continue op-
timalisatieproblemen, zowel op theoretisch als op experimenteel niveau. In
dit opzicht heeft QC de potentie een ideale testomgeving te zijn voor evo-
lutionaire optimalisatie, in het bijzonder voor niche-aanpakken. Dit komt
door enkele opmerkelijke karakteristieken van zogeheten QC-landschappen.
Typerend voor zulke landschappen is, zoals bewezen in QC-theorie, dat ze
oneindig veel optimale oplossingen hebben. Door dit alles is de combinatie
van niche-onderzoek en zijn toepassingen op QC-landschappen voor ons heel
intrigerend. Toen we deze overweldigende, ideale rijkdom aan oplossingen
binnen QC-landschappen dan ook eenmaal hadden opgemerkt, hebben we
besloten een op zichzelf staand deel van dit proefschrift te wijden aan Quan-
tum Control. In symbolische zin vormt deze interdisciplinaire studie daarmee
een gesloten natural-computing-cirkel, waarin biologisch-georiënteerd onder-
zoek van organische evolutie, met name die binnen een soort, bijdraagt aan
de ontwikkeling van rekenmethoden om toepassingen binnen de natuurkunde
als geheel op te lossen en in het bijzonder binnen Quantum Control. Naar
ons idee wordt deze symbolische zienswijze nog verder versterkt door het
stochastische karakter van EA. Aldus, biologisch geïnspireerd door Evolu-
tionaire Biologie in het algemeen en door organic speciation in het bijzonder
en tevens op scherp door de drijfveer meervoudig optimale oplossingen te
willen vinden voor het beter nemen van beslissingen in praktijsituaties, doen
we in deze studie verslag van onze reis, vertrokken vanuit diversiteit in de
natuur, beland bij conceptuele ontwerpen in Quantum Control.

Dit proefschrift bestaat uit twee delen: Deel I introduceert een niche-
framework voor een klasse van state-of-the-art ES-algorithmen, namelijk de
Derandomized Evolution Strategies (DES), en gaat in op het uitproberen
van de voorgestelde algorithmen in kunstmatige landschappen. Deel II geeft
een overzicht van de voornaamste aspecten van Quantum Control binnen
de algemene context van globale functie-optimalisatie. Vervolgens worden
de experimentele waarnemingen van de DES algorithmen gepresenteerd en
tevens die van de voorgestelde niche-algorithmen zoals toegepast op ver-
schillende QC-systemen, zowel in laboratoriumsituaties als op verschillende
niveaus van numerieke simulatie.
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