```
Mind the Gap reflections on benchmarking in the global era
```

Ofer M. Shir (Tel-Hai College \& Migal Institute, ISRAEL) ofersh@telhai.ac.il

Dagstuhl Seminar 23251, June 2023

SCHLOSS DAGSTUHL
Leibniz-Zentrum für Informatik
"Challenges in Benchmarking Optimization Heuristics"

Consensus on Benchmarking Compilation?

The human factor plays a crucial role in such a process. Formulation of a test-suite may involve three types of scholars: theoreticians, algorithms' designers, and practitioners:
(i) theoreticians naturally favor analyzable functions
(ii) algorithms' engineers may prefer families of functions that are successfully treated by their designs
(iii) practitioners may have the best insights into which functions most accurately represent real-world problems (thus having their biased preferences)

A proper balance should be made amongst those three parties to effectively compile a test-suite meaningful to a broad audience. ${ }^{1}$

Yet Another Perspective:

Operations Research as the Optimization Complement ${ }^{2}$

Opportunities: OR Gaps

Could we perhaps make a difference by actually addressing the weak spots of OR as our benchmarks?

Algorithms-wise, hybrids do make a difference while outperforming white-box solvers - see, e.g., MATHEURISTICS and Blum+Raidl. ${ }^{3}$

Existing opportunity:

Aim for compiling an "OpenEC" platform, with a unified interface, for optimizing test-functions that are beyond the reach of OR.

Continuous Opportunity (SO): The Quantum Sphere ${ }^{4}$

Given a control phase $\phi(\Omega)$ and a dispersion term $k(\Omega)$, the spectral intensity $I_{2}(\Omega)$ is formulated by means of the spectral terms:

$$
\begin{align*}
& E_{1}(\Omega)=A(\Omega) \exp i[\phi(\Omega)+k(\Omega)] \\
& E_{2}(\Omega)=E_{1}(\Omega) * E_{1}(\Omega)=\int_{-\infty}^{\infty} E_{1}\left(\Omega^{\prime}\right) \cdot E_{1}\left(\Omega-\Omega^{\prime}\right) \mathrm{d} \Omega^{\prime} \tag{1}\\
& I_{2}(\Omega)=\left|E_{2}(\Omega)\right|^{2}
\end{align*}
$$

The standard Quantum Sphere is defined as follows:

$$
\begin{equation*}
Q S(\phi, k)=\int_{-\infty}^{\infty} I_{2}(\Omega) \mathrm{d} \Omega \longrightarrow \max \tag{2}
\end{equation*}
$$

When $k=0, Q S$ is maximized by any phase function linear in the frequency Ω : $\operatorname{argmax}_{\phi(\Omega)}\{Q S(\phi, k=0)\} \equiv a \Omega+b \quad \forall a, b$ (and in particular by a constant phase, $a=0, \forall b)$.
\Longrightarrow The decision variables ϕ are meant to compensate for the function $k(\Omega)$ over the periodic domain $[0,2 \pi]^{D}$.

Continuous Opportunity (MO): Diffraction Grating ${ }^{5}$

DG Formulation

Introducing a basic set of optical test-problems for Pareto optimization, scalable in dimension and subject to a collection of defining parameters for setting the Pareto front's curvature.

Given an optical setup of n slits, and given phases $\vec{\varphi} \in[0,2 \pi]^{n}$, the intensity on a screen point positioned at q reads:

$$
\begin{equation*}
I_{D G}(q, \vec{\varphi})=\frac{1}{n^{2}} \operatorname{sinc}^{2}\left(\frac{q b}{2}\right) \cdot\left|\sum_{k=0}^{n-1} \exp (i q h k) \cdot \exp \left(i \varphi_{k}\right)\right|^{2} \tag{3}
\end{equation*}
$$

Given a set of m competing points on the screen, described by a position vector $\vec{q} \in \mathbb{R}^{m}$, the m-objective DG problem becomes:

$$
\vec{f}(\vec{q}, \vec{\varphi})=\left(\begin{array}{c}
I_{D G}\left(q_{1}, \vec{\varphi}\right) \tag{4}\\
I_{D G}\left(q_{2}, \vec{\varphi}\right) \\
\vdots \\
I_{D G}\left(q_{m}, \vec{\varphi}\right)
\end{array}\right) \longrightarrow \max
$$

Discrete Opportunity: Nonlinear Nonconvex Objective ${ }^{6}$

The Low-Autocorrelation Binary Sequence (LABS) problem is a hard combinatorial optimization problem with practical applications in electrical engineering. It is incorporated within the IOHprofiler. Given a sequence of length $n, S:=\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i}= \pm 1$,

$$
\begin{align*}
& \text { [LABS] maximize } \frac{n^{2}}{2 E(S)} \\
& \text { subject to: } \\
& \qquad E(S):=\sum_{k=1}^{n-1}\left(\sum_{i=1}^{n-k} s_{i} \cdot s_{i+k}\right)^{2} \tag{5}\\
& \qquad s_{i} \in\{-1,+1\} \forall i \in\{1 \ldots n\}
\end{align*}
$$

Mixed-Integer Opportunity: White-Box Solvers' Deficiency on moMIQP

Shir and Emmerich, "Comparing White-Box to Black-Box Solvers over Multi-Objective Mixed-Integer Quadratic Models", submitted (2023).

Complexity of Unbounded Problems

Theorem [Jeroslow, 1973] ${ }^{7}$
A quadratically-constrained mixed-integer unbounded problem is undecidable.
(1) A generalized unbounded MIQP cannot be linearized (even if the integers $x_{i}: i \in I$ may be linearized using auxiliary binaries, the multiplication of two (loosely bounded) decision variables within \vec{x} cannot be precisely linearized (rather could be piecewise approximated upon separation).
2 Despite this theoretical complexity, there has been much practical progress in treating Quadratically-Constrained problems ${ }^{8}$ (e.g., by reformulation to a bilinear programming problem with integer variables, or by diverting to Mixed-Integer Second-Order Cone Programming when the model permits).

Discussion

danke

Bibliography

[1] O. M. Shir, C. Doerr, and T. Bäck, "Compiling a benchmarking test-suite for combinatorial black-box optimization: a position paper," in Proc. of Genetic and Evolutionary Computation Conference (GECCO'18), Companion, pp. 1753-1760, ACM, 2018.
[2] O. M. Shir and T. Bäck, "Sequential experimentation by evolutionary algorithms," in Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO '22, (New York, NY, USA), p. 1450-1468, Association for Computing Machinery, 2022.
[3] C. Blum and G. R. Raidl, Hybrid Metaheuristics: Powerful Tools for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, Switzerland: Springer International Publishing, 2016.
[4] O. M. Shir, X. Xing, and H. Rabitz, "Multi-level evolution strategies for high-resolution black-box control," Heuristics, vol. 27, p. 1021-1055, 2021.
[5] O. M. Shir, J. Roslund, Z. Leghtas, and H. Rabitz, "Quantum control experiments as a testbed for evolutionary multi-objective algorithms," Genetic Programming and Evolvable Machines, pp. 1-47, 2012.
[6] C. Doerr, F. Ye, N. Horesh, H. Wang, O. M. Shir, and T. Bäck, "Benchmarking discrete optimization heuristics with IOHprofiler," Applied Soft Computing, vol. 88, p. 106027, 2020.
[7] R. G. Jeroslow, "There cannot be any algorithm for integer programming with quadratic constraints," Operations Research, vol. 21, no. 1, pp. 221-224, 1973.
[8] C. Bliek, P. Bonami, and A. Lodi, "Solving Mixed-Integer Quadratic Programming problems with IBM-CPLEX: a progress report," in Proceedings of the 26th RAMP Symposium, Hosei University, Tokyo, 2014.

