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Presentation Overview

Motivation: Consumable Pareto Analytics
Automated Recommendation
Gain Desire versus Loss Aversion

Graph Modeling and Subset Attainment



Motivation: Consuming Optimality

Following a multiobjective optimization process the Pareto
Frontier is attained (deterministic algorithms vs. heuristics)

Our scenario: The DM’s preferences and tendencies are
known (e.g., following an elicitation process)

Typical real-world client’s request —
— “can you narrow-down the Frontier to recommended
solutions only?”

Goal
— Derive a subset of solution-points on the Frontier
— Account for gain-prone and loss-averse subsets

The means: Graph-Based Modeling



Related Work

* Relevant studies lie in the domains of
Multi-Criterion Decision Making and
Interactive Recommender Systems

 Preference Elicitation

— Multi-Attribute Utility Theory, Analytical
Hierarchy Process

e Recommendation
— ELECTRE



AUTOMATED
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Multiobjective Recommendation Process

Efficient Frontier Output/

8 \
Compute Subset

Calibrate » Identify Recommended Set

i (v, &)™
Elicit DM’s Preferences {p;, 95, v;} =~ Recommendation Recipe:
Cangiderproblentiyps Ora - Cluster the Frontier
_ Diagnose LA/GP tendencies - Construct preferences graph

- Elicit preferences/dislike parameters: Compiethedopicam

(75 5)Fuzzy {Pj, qj, vj} 014
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Proposed Framework

recommend(Efficient Frontier /., numClusters #, int mode)

l: I' +— cluster (F., k)

2 $ort =1 .o do

3:  G; ¢— calcOutrankingGraph (F (1'(7.:)))
4:  if mode==GP then

5 W,; +— selectOffensiveTeam (G;)

6: else

7 W; +— selectDefen31veTeam(Qz)

8: return {W;},_ /* top teams per cluster */
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Clustering

* Divide the Pareto hyper-surface into
smaller regions and let the DM focus only
on regions they find interesting:

 The solutions in each cluster are
Independent of the other clusters.

« Eventually, we select n, winners, out of N
solutions ( ni/N; = n/N)



Pairwise Comparisons

» Measure for each pair of solutions the
degree of certainty that solution a
outperforms solution b

— Simpler than conductin(g global prioritization over

a set of solutions: Z ) N.\ 1 5 N
1Gee \ 2 K \ 2

— Seems like a natural task for the DM

* We consider three estimation techniques:
1. K-Optimality feat. Fuzzy Logic
2. ELECTRE-II
3. ELECTRE-IS



Graph Construction

calcOutrankingGraph(solutions JF)

l: initialize pairwise preference matrix {2 = (w; ;) € RIFIXIFI =10
2 Ve— F

3: E+— 0

4z ifor 5 = 1. ..|F| do

§: dor j = L...|F| de

6: switch (mode)

& case K-0PT: | g
8: Wi j — 1/111}311 (fm <k f(j)) %
9: case ELECT-III: o
10: Wi g <— O (f(i), f(j)> %
11: case ELECT-IS: %
12: Wi,j < 1aXs <f(7;) s f(j))

1:3: end switch

14: E+— FEU/(i~ j, w=tit7)
15: return G = {V,FE} * complete directed @
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Fuzzy Logic Relations

When comparing two solutions, we account for
the degree of improvement in each coordinate

by means of fuzzy membership functions
(better/equal/worse) :

m

ey (10 5P) =31y (17— 1)
§—1

< = >




Fuzzy Logic: k-dominance and k-optimality
* We state that solution f; k-dominates f, if and only Iif,

£(1) (2
(ne(f(l),f(z))<m) and (nw(fl’fz)]<k

n ( 0,79

and denoteitas S <k f?,

> Note: €=0, k=0 will reduces this relation to Pareto-
dominance relation

« As aresult, we may define the following preference function:

oo 4= 1/ min (£ <1 )



ELimination Et Choix Traduisant la REalité
(ELECTRE)

* Consider the binary comprehensive outranking relation S; ~ a 'Sa  holds
when @', with respect to every criterion, is at least as good as a

a'sa iff f(a')<f(a)+q,

 The subset of all criteria that are in concordance with the assertion
a'Sa is called the concordant coalition (with this assertion).
It is denoted by C (a’Sa)

4

« The ji criterion is in discordance with the assertion a'Sa if and only if ana
/ . /
aPa’ iff f(a)<f(a’)-p,

* The subset of all criteria that are in discordance with the assertion a'Sa
is the discordant coalition C (aPa

« Given the set of criteria (objectives) F, we may conclude
C(a'sa)NC(aPa’)=g
C(a'sa)UC(aPa’)cF



Concordance/Discordance, Hesitation, \Veto

» There are scenarios where C(a'Sa)lUC(aPa’)=F ;these would
hold when

aQ.a’ iff f(a)+p, >f(a)>f(a)+q, (p,>a;)

+ Finally, with each ordered pair (&',a), a partition of F into three
subsets Is associated:

C(a'sa)lUC(aQa’)UC(aPa’)=F
- Upon the validation of a'Sa, we consider discordant criteria.

* We also consider a veto threshold, V;, defined by means of the
following statement:

! /
f, (a)- f ()< —Vj is incompatible with the assertion a8'Sa whatever
the other performances are.



Utilizing ELECTRE

* We consider 2 specific variants and derive
estimation metric (detalls excluded):

— ELECTRE-Il wij+—o0 (f('i). f(j)>

1 — (‘/(,j),, (a,b)
clab)=clab) ] -~
2oy Lk

j:dzfj_v) (a,b)>c(q) (a,b)

—ELECTRE-IS  wij «— max, (£ <. f9)
where « <. b holds if and only if

("(q) ((I. ])) Z S
V7 (‘/E;}?v) > —v+(v—p) -w (s c(q) (@, b))



Outranking Aftermath

We construct a complete directed graph with
weights:

— Minimal value O: a is certainly not better than b

— Large positive value: the degree to which a is
preferred over b

Calibration of either methods is necessary.
Fuzzy scoring reflects the Gain-Prone POV.

ELECTRE methods reflect the Loss-Averse
POV.




Selection: Loss Averse versus Gain-Prone

Inspired by studies of Kahneman-Tversky, we devise:

« GP track: solutions that "win the most" form the top
offensive team

* LA track: solutions that "lose the least” form the top
defensive team
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Suggested Selection: Graph Kernels

« Agraph kernel is the subset of vertices that is both
Independent and dominating:

if u,veK then (u,v),(v,u)gK
forany veK thereexistsu eK:(u,v)eK

« Kernels are typically computed in ELECTRE-
based selection schemes as the output of the

selection process.

* We argue that kernels are inappropriate for our
selection process due to the following reasons:

— Defined for unweighted graphs
— No control over its size; may be empty



GP Track: The Top Offensive Team

Algorithm 1 — naive:
1. For each vertex: deg(v) = MaXees, .. (v) We
2. Select top N, vertices

Algorithm 2 — a relaxation of the Dominating Set Problem for weighted
graphs:

1. For each set D, we define the covering degree of each vertex as,
_ 1 it veD
cur (D,v) = ‘

max  w(wu,v) otherwise
u€eD,(u,v)eEL

2. We define the covering degree of each set as the total degree of all vertices,

cur (D) = Z cur (D, v)

veV

3. Solve: max cvr (D)
ID|I<n '



- iax cur (D
Solving pi<x (D)
1. G_reedy: DEFLg D’” U < arg 131;5; {(:z'/' (Dk U {z}) — cor (Dk’) }}
Since cvr(D) constitutes a submodular monotone function,
this approach guarantees a (1-1/e)-approximation to it !

2. Mixed-Integer LP (MILP; employing ILOG-CPLEX):
Binary decision variables: sol[l..[V|] cover[L.[V]][L..|V]

where cover[v|[u] = 1 translates to vertex v to cover vertex u

[P1] maximize ) > w(u,v)- cover|v]|u]

veV uevVv

subject to:

Y. sollv] € Niwe
> cover[v]|ul L1VueV
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LA Track: The Top Defensive Team

« Algorithm 3 — naive:
1. For each vertex: deg(v) = maXees,, (v) We
2. Select tail N vertices

« Algorithm 4 :
1. For each resisting set R, we define the degree of each vertex as,

deg (R, u) = Z w (u, v)

veER\u

2. The resistance degree of each set is then defined as the maximal degree of all
vertices (i.e., the strongest offence on R):,

res (R) = max deg ('R. )

ueV

3. Solve: min res (R)
R|>n



Solving (a1 res (R)

1. Greedy: R —REUL arg Imin Z w (u, v)

2. MILP: I

Binary decision variables: sol[l..|V|]

[P2] minimize t
subject to:

% solly| 2 Nise

veV

> w(u,v)-sollv] <tVueV
’l,re‘/r
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Demonstration: 5-Objective Problem
Visualization by means of SOMMOQOS.:

Congestion Air Quality
Reduce ﬁ ?& ﬁ min: 1.0 -> max: 15.0
[lane ,
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Discussion

* ELECTRE is oriented toward loss aversion, but does not
excel in distinguishing between domination to quasi-
domination

* On the other hand, the Fuzzy K-Domination approach does
not differentiate between loss aversion to gain favoring

* We also propose a hybrid approach —

— As long as we are not imposed to a significant loss (ELECTRE-
wise), we would like to rank according to gains/winnings

— We utilize ELECTRE to evaluate incredibility and Fuzzy/K-
Optimality to measure preference

() if o < thresh

l . — n — 1 ”/' _ l’“'
Hyb(a.b) { Flab)y otierwise F(a,b) = min {(). v

« LA Is not GP-dual!
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