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why are we here?

• Global optimization has been for several decades addressed by
algorithms and Mathematical Programming (MP) — branded as
Operations Research (OR), yet rooted at Theoretical CS [1].

• Also – it has been treated by dedicated heuristics (“Soft
Computing”) – where EC resides (!)

• These two branches complement each other, yet practically
studied under two independent CS disciplines
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further motivation

EC scholars become stronger, better-equipped researchers when
obtaining knowledge on this so-called “optimization complement”

Commonly-encountered misbeliefs:
• “if the problem is non-linear, there is no choice but to employ a

Randomized Search Heuristic”
• “if it’s a combinatorial NP-complete problem, EAs are the most

reasonable option to approach it”
• “neither Pareto optimization nor uncertainty is/are addressed by

OR”
• “OR is the art of giving bad answers to problems, to which,

otherwise worse answers are given”
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MP fundamentals

Mathematical Programming: fundamentals

based on (i) MIT’s “Optimization Methods” course material by D. Bertsimas,
(ii) “Combinatorial Optimization” by Ch. Papadimitriou & K. Steiglitz,

(iii) “The Nature of Computation” by C. Moore and S. Mertens, and
(iv) IBM’s ILOG/OPL tutorials and documentation.
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MP fundamentals

the field of operations research

• Developed during WW-II: mathematicians assisted the US-army
to solve hard strategical and logistical problems; mainly planning
of operations and deployment of military resources. Due to the
strong link to military operations, the term Operations Research
was coined.
• Post-war: knowledge transfer into industry
• Roots: linear programming (LP), pioneered by George B. Dantzig
• Dantzig worked for the US-government, formulating the

generalized LP problem, and devising the Simplex algorithm for
tackling it. He also pursued an academic career (Berkeley,
Stanford).
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MP fundamentals

mathematical optimization: CP ∪ MP

• Partitioning into 2 main approaches: constraints programming
(CP) versus mathematical programming (MP). CP is concerned
with constraints satisfaction problems (CSPs), which possess no
objective functions (sometimes because impossible to model).
CP is usually of little interest to us, but it is super important for
Formal Verification, where tasks can be modeled as CSPs.

• MP includes the following techniques:
1 linear programming (LP)
2 integer programming (IP)
3 mixed-integer programming (MIP)
4 quadratic programming (QP) and mixed-integer QP (MIQP)
5 nonlinear programming (NLP)
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MP fundamentals

the canonical optimization problem

The general nonlinear problem formulated in the canonical form [2]:

minimize~x f(~x) ~x ∈ Rd

subject to: g1(~x) ≥ 0
...
gm(~x) ≥ 0
h1(~x) = 0
...
h`(~x) = 0

(1)
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MP fundamentals

solving the general problem

• Convexity:
1 f : S → R
2 The function is convex iff ∀s1, s2 ∈ S, 0 < λ < 1

f (λs1 + (1− λ) s2) ≤ λf (s1) + (1− λ) f (s2)

3 f is concave if −f is convex.
• The problem is called a convex programming problem when

i f is convex
ii gi are all concave

iii hj are all linear

• Strongest property: local optimality implies global optimality
• Sufficient conditions for optimality exist (Kuhn-Tucker)
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MP fundamentals LP and polyhedra

linear programming: standard form

When f and the constraints are all linear, LP is formed by the
standard form (minimization, equality constraints, non-negative
variables) to search over a d-dimensional space, ~x ∈ Rd:

minimize~x ~cT~x

subject to: A~x = ~b

~x ≥ 0

(2)

with A ∈ Rm×d and ~b ∈ Rm describing the constraints.
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MP fundamentals LP and polyhedra

polyhedra

• A hyperplane is defined by the set{
~x ∈ Rd : ~aT ~x = b0

}
• A halfspace is defined by the set{

~x ∈ Rd : ~aT ~x ≥ b0
}

• A polyhedron is constructed by
the intersection of many halfspaces.

• The finite set of candidate solutions
is the set of vertices of the convex
polyhedron (polytope) defined by
the linear constraints!

• Thus, solving any LP reduces to
selecting a solution from a finite set
of candidates ⇒ the problem is
combinatorial in nature.
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MP fundamentals LP and polyhedra

geometry of LP

Given a polytope
P :=

{
~x ∈ Rd : A~x ≤ ~b

}

• The point ~x is a vertex of P
• ~x ∈ P is an extreme point of P if

@~y, ~z ∈ P (~y 6= ~x, ~z 6= ~x) : ~x = λ~y + (1− λ)~z, 0 < λ < 1

• ~x ≥ ~0 ∈ Rd is a basic feasible solution (BFS) iff A~x = ~b and
exist indices B1, . . . ,Bm such that:

(i) the columns AB1 , . . . ,ABm
are linearly independent

(ii) if  6= B1, . . . ,Bm then x = 0
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MP fundamentals LP and polyhedra

polytopes and LP

“Corners” definitions: equivalence theorem

P :=
{
~x ∈ Rd : A~x ≤ ~b

}
; let ~x ∈ P.

~x is a vertex ⇐⇒ ~x is an extreme point ⇐⇒ ~x is a BFS

See, e.g., [3] for the proof.

Conceptual LP search:
• begin at any “corner”
• while “corner” is not optimal hop to its neighbouring “corner”

as long as it improves the objective function value
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MP fundamentals simplex and duality

the basic simplex
1 t← 0; opt, unbounded← false, false
2 ~xt ← constructBFS(), B← [AB1 , . . . ,ABm ]
3 while !opt && !unbounded do
4 if c̄j := cj − ~cTBB−1Aj ≥ 0 ∀j then opt← true
5 else
6 select any j such that c̄j < 0
7 if ~u := B−1Aj ≤ ~0 then unbounded← true
8 else
9 ~xt+1 ← pivot on ~xt /* see [4] for details */

10 set new basis Aj /* see [4] for details */
11 t← t+ 1
12 end
13 end
14 end

output: ~xt
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MP fundamentals simplex and duality

duality
i. Every LP has an associated problem known as its dual; min turns
into max, each constraint in the primal has an associated dual variable:

minimize~x ~cT~x ~x ∈ Rd

subject to: A~x = ~b
~x ≥ 0

maximize~p ~pT~b ~p ∈ Rm

subject to: ~pTA ≤ ~cT

minimize~x ~cT~x ~x ∈ Rd

subject to: A~x ≥ ~b
maximize~p ~pT~b ~p ∈ Rm

subject to: ~pTA = ~cT

~p ≥ 0

ii. The dual of the dual is the primal.
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MP fundamentals simplex and duality

duality theorems [von Neumann, Tucker]
• Weak duality theorem

If ~x ∈ Rd is primal feasible and ~p ∈ Rm is dual feasible then

~pT~b ≤ ~cT~x

• Corollary: If ~x is primal feasible, ~p is dual feasible, and ~pT~b = ~cT~x,
then ~x is optimal in the primal and ~p is optimal in the dual.

• Strong duality theorem
Given an LP, if it has an optimal solution – then so does its dual –
having equal objective functions’ values.

⇒ The dual provides a bound that in the best case equals the
optimal solution to the primal – and thus can help solve
difficult primal problems.
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MP fundamentals simplex and duality

dual simplex

• Simplex is a primal algorithm: maintaining primal feasibility while
working on dual feasibility
• Dual-simplex: maintaining dual feasibility while working on primal

feasibility –
Implicitly use the dual to obtain an optimal solution to the primal as
early as possible, regardless of feasibility; then hop from one vertex to
another, while gradually decreasing the infeasibility while maintaining
optimality
• Dual-simplex is the first practical choice for most LPs.

R. Vanderbei, Linear Programming: Foundations and Extensions. Springer, 5th ed.,
2020, ISBN: 978-3-030-39414-1.
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MP fundamentals simplex and duality

simplex: convergence

• Dantzig’s simplex finds an optimal solution to any LP in a finite
number of steps (avoiding cycles is easy, but excluded here).
• Over half-century of improvements, its robust forms are very

effective in treating very large LPs.
• However, simplex is not a polynomial-time algorithm, even if it is

fast in practice over the majority of cases.
• Pathological LP-cases exist (e.g., the Klee-Minty cube [5]) – where

an exponential number of steps is needed for convergence.
• An ellipsoid algorithm [5], devised by Soviet mathematicians in

the late 1970’s, is guaranteed to solve every LP in a polynomial
number of steps.
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MP fundamentals the ellipsoid algorithm

“high-level” ellipsoid [Shor-Nemirovsky-Yudin]
input : a bounded convex set P ∈ Rd

1 t← 0
2 Et ← ellipsoid containing P
3 while center ~ξt of Et is not in P do
4 let ~cT~x ≤ ~cT ~ξt be such that

{
~x : ~cT~x ≤ ~cT ~ξt

}
⊇ P

5 update to the ellipsoid with minimal volume containing
the intersected subspace:

Et+1 ← Et ∩
{
~x : ~cT~x ≤ ~cT ~ξt

}

6 t← t+ 1
7 end

output: center ~ξt ∈ P
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MP fundamentals the ellipsoid algorithm

ellipsoid aftermath

• Polynomial-time algorithm for obtaining ~x∗ within any given
bounded convex set
• Khachian first used it (1979) to show polynomial solvability of LPs
• Theorem: if there exists a polynomial-time algorithm for solving

a strict linear inequalities problem, then there exists a
polynomial-time algorithm for solving LPs (see [3] for the proof).
• Conceptual novelty: disregarding the combinatorial nature of LPs
• In practice, unlike simplex, the ellipsoid is slow yet steady.
• However, its theoretical “polynomiality” has strong implications

also for discrete optimization.
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MP fundamentals discrete optimization

discrete optimization
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MP fundamentals discrete optimization

Integer Programming

Integer Programming (IP) involves optimization problems with discrete
decision variables and is central to both practical computation and the
theoretical foundations of Computer Science.
• The decision version of IP is NP-hard.
• For decades, the fastest exact algorithm was due to Kannan, with

a running time of: poly(d) 2O(d) for an instance with d variables.
• A recent breakthrough by Rothvoss & Reis tightened this

bound [6] by providing a randomized algorithm that solves any IP
in:

(log(2d))O(d) steps.
• Nevertheless, heuristics remain the primary problem-solvers.
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MP fundamentals discrete optimization

from LP to ILP

• The introduction of integer decision variables into a linear
optimization problem yields a so-called (mixed)-integer linear
program ((M)ILP) [7].
• A powerful modeling framework with much flexibility in describing

discrete optimization problems.
• The general ILP is itself NP-complete — and yet, there are

subsets of “very easy” versus “very hard” problems.
• p2p shortest path over a graph with d nodes has an algorithm with
O(d2) complexity, versus the traveling salesman problem...
• Unlike “pure-LP”, whose complexity is dictated by d+m

(variables+constraints), the choice of formulation in ILP is critical!
• Direction — what if the constraints matrix is unimodular [8] ?
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MP fundamentals discrete optimization

integer linear optimization

• Pure integer:
maximize~x ~cT~x

subject to: A~x ≤ ~b
~x ∈ Zd

+

(3)

• Binary optimization (important special case):

The above pure integer model with ~x ∈ {0, 1}d

• Mixed-integer:
maximize~x ~cT~x+ ~hT~y

subject to: A~x+ B~y ≤ ~b
~x ∈ Zd

+, ~y ∈ R`
+

(4)
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MP fundamentals discrete optimization

LP relaxations and the convex hull
• Given a discrete optimization problem, its consideration as a

“pure” (continuous) LP is called its LP relaxation; e.g., each
binary variable becomes continuous within the interval [0, 1]:

xi ∈ {0, 1}  0 ≤ xi ≤ 1

• Formally, given a valid ILP formulation
{
~x ∈ Zd+ | A~x ≤ ~b

}
, the

polytope
{
~x ∈ Rd | A~x ≤ ~b

}
constitutes its LP relaxation.

• The convex hull of a set of points is defined as the “smallest
polytope” that contains all of the points in the set; given a finite
set S :=

{
p(1), . . . , p(N)

}
, it is defined as

C (S) :=
{
q

∣∣∣∣∣q =
N∑
k

λkp
(k) ,

N∑
k

λk = 1, λk ≥ 0, p(k) ∈ S
}

(5)
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MP fundamentals discrete optimization

quality of formulations

• The integral hull is the convex hull of the set of integer solutions:

P̃ := C(X), X ⊂ Zd solution points

(the smallest continuous shape that encloses all these discrete
integer points; smaller or identical to the relaxed LP’s C (S)).
• The quality of an ILP formulation for a problem having a feasible

solution set X, is governed by the closeness of this C(X) to the
feasible set of its LP relaxation (which is usually larger).
• Given an ILP with two formulations, {P1, P2}, you may formally

determine, e.g., that P1 is as strong as P2, in terms of the
feasible sets of their LP relaxations.
• Explicit knowledge of C(X) is thus very valuable!
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MP fundamentals discrete optimization

“easy polyhedra”

• If the integral hull is attainable as P̃ =
{
~x ∈ Rd | Ã~x ≤ ~̃b

}
, the

problem is polynomially solvable (all vertices are integers!) [7]
• Another perspective: an LP relaxation of an ILP with a totally

unimodular constraint matrix has only integer solutions! [8]

• MILPs with fully-understood integral hulls — assignment,
min-cost flow, matching, spanning tree, et cetera.

• Understanding how well an ILP’s LP relaxation aligns with its
integral hull is critical for appreciating the performance of
Branch-and-Bound, the powerful algorithm we’re about to discuss.
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MP fundamentals discrete optimization

branch-and-bound

One of the common approaches to address IP, relying on the ability to
bound a given problem.
In ILP, these bounds are derived directly from the LP relaxations.

It is a tree-search, adhering to the principle of divide-and-conquer :
(i) branch: select an active subproblem F̂
(ii) prune: if F̂ is infeasible – discard it
(iii) bound: otherwise, compute its lower bound L(F̂)
(iv) prune: if L(F̂) ≥ U , the current best upper bound, discard F̂
(v) partition: if L(F̂) < U , either completely solve F̂ , or further

break it to subproblems added to the list of active problems
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MP fundamentals discrete optimization

“high-level” LP-based branch-and-bound
input : a linear integer program F

1 Ω← {F}; U ←∞ /* active problems’ set; global upper bound */
2 while Ω is not empty do
3 let F̂ be a active subproblem, F̂ ∈ Ω; Ω← Ω\

{
F̂
}

4 compute its lower bound L(F̂) by solving its LP relaxation
5 if L(F̂) < U then
6 U ← L(F̂)
7 if exists heuristic solution ~ψ for F̂ then ~x∗ ← ~ψ

8 else given the LP relaxation’s optimizer, ~ξ, if it contains a
fractional decision variable ξi, construct 2 subproblems{
Ḟ , F̈

}
by imposing either one of the new constraints

xi ≤ bξic or xi ≥ dξie — and add them Ω← Ω ∪
{
Ḟ , F̈

}
9 /* selection rules needed if #fractional ξi > 2*/

10 end
11 end

output: ~x∗
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MP in practice

MP in practice
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MP in practice solving an LP

obtaining an LP standard form

• LP’s standard form (minimization, equality constraints,
non-negative variables):

minimize~x ~cT~x

subject to: A~x = ~b

~x ≥ 0

• Applicable transformations to obtain standard form (introducing
slack/surplus variables and accounting for unrestricted variables):
(a) max ~cT~x ⇔ −min

(
−~cT~x

)
(b) ~aTi ~x ≤ bi ⇔ ~aTi ~x+ si = bi, si ≥ 0
(c) ~aTi ~x ≥ bi ⇔ ~aTi ~x− si = bi, si ≥ 0
(d) −∞ < xj <∞ ⇔ xj := x+

j − x
−
j , x+

j ≥ 0, x−j ≥ 0
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MP in practice solving an LP

linear programming: solutions

minimize − x1 − x2

subject to: x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3
x1, x2 ≥ 0

dvar float+ x1,x2,s1,s2;
minimize

-x1 - x2;
subject to {

x1 + 2x2 + s1 == 3;
2x1 + x2 + s2 == 3;

}
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MP in practice basic modeling using OPL

the fractional (continuous) knapsack problem

n items to be picked in a fractional way, i = 1, . . . , n:
• vi: value of each item
• wi: weight of each item

Target: maximize the total value within a knapsack of capacity C.

[FKP] maximize
n∑
i=1

vi · xi

subject to:
n∑
i=1

xi ≤ C

wi ≥ xi ∈ R ∀i ∈ 1 . . . n

(6)
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MP in practice basic modeling using OPL

basic f-knapsack in OPL

// Data reading from external database (or sheet or flat file)
{int} N = ...;
{float} CAPACITY = ...;
{float[N]} Values = ...;
{float[N]} Weights = ...;

dvar float+ select_ind[N] in 0..CAPACITY ;

maximize
sum (n in N) (select_ind[n] * Values[n]) ;

subject to {
forall (n in N) select_ind[n] <= Weights[n] ;

}
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MP in practice basic modeling using OPL

integer knapsack in OPL

// Data reading from external database
{int} N = ...;
{int} CAPACITY = ...;
{int[N]} Values = ...;
{int[N]} Weights = ...;

dvar int select_ind[N] in 0..1 ;

maximize
sum (n in N) (select_ind[n] * Values[n]) ;

subject to {
sum (n in N) select_ind[n]*Weights[n] <= CAPACITY;

}
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MP in practice basic modeling using OPL

solver operations

• Modern solvers allow the user to choose/tune their core
algorithms:

cplex.startalg = 1; //primal simplex; for LP relaxation
cplex.lpmethod = 2; //dual simplex
cplex.epgap = 0.001; //relative MIP optimality gap
cplex.IntSolLim = 100; //number of integer solutions to stop
cplex.polishtime = 1800; //polishing time; see text below
cplex.tilim = 1800; //computation time limit

• Some MILP solvers actually employ evolutionary operators in their
heuristic components, such as CPLEX’s polish subroutine [9].
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MP in practice QP and the Markowitz model

quadratic programming (QP)
• The simplest formulation of a QP has a quadratic objective

function and linear constraints:

minimize~x
1
2~x

TQ~x+ ~cT~x

subject to: A~x ≤ ~b
~̀≤ ~x ≤ ~u

(7)

• Renowned QP: the Markowitz portfolio – minimizing risk while
ensuring minimal ROI, subject to a bounded portfolio investment:

Q : portfolio’s covariance matrix, representing RISK
~c = ~0
~ρ : stochastic return, representing ROI
constraints: ~ρT~x ≥ ROImin∑

i xi = INVESTtotal

(8)
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MP in practice QP and the Markowitz model

Markowitz: OPL implementation
{string} Investments = ...;
float Return[Investments] = ...;
float Covariance[Investments][Investments] = ...;
float BUDGET = ...;
float alpha = ...;

range float FloatRange = 0..BUDGET;
dvar float Allocation[Investments] in FloatRange;

maximize (sum(i in Investments) Return[i]*Allocation[i])
- alpha*(sum(i,j in Investments)

Covariance[i][j]*Allocation[i]*Allocation[j]);

subject to {
// SPEND-IT-ALL: sum of allocations equals the given budget
allocate: (sum (i in Investments) (Allocation[i])) == BUDGET;

}
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MP in practice QP and the Markowitz model

QCP, (M)IQP/(M)IQCP and QUBO

• A Quadratically-Constrained Program (QCP) has quadratic terms
in its constraints (possibly no quadratic terms in the objective)
• (Mixed-)Integer QP and QCP involve integer decision variables

(partially or entirely)
• Renowned MIQP: the quadratic assignment problem (QAP)

• QUBO: Quadratic Unconstrained Binary Optimization – special
case of IQP with only binary variables and without constraints.
• Highly relevant to the emerging Quantum Optimization field due

to the inherent link to the Ising model.
• Intrigued? Visit the Quantum Optimization Tutorial and

Workshop @gecco2025 !
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MP in practice CSP and the N-Queens

CSP: the N -queens problem

The N -queens problem (NQP) [10] is defined as the task to place N
queens on an N ×N chessboard in such a way that they cannot attack
each other.
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MP in practice CSP and the N-Queens

N -queens as maximization

maximize
∑
i,j
xij

subject to:∑
i

xij ≤ 1 ∀j ∈ {1 . . . , N}∑
j

xij ≤ 1 ∀i ∈ {1 . . . , N}∑
j−i=k

xij ≤ 1 ∀k ∈ {−N + 2,−N + 3, . . . , N − 3, N − 2}∑
i+j=`

xij ≤ 1 ∀` ∈ {3, 4, . . . , 2N − 3, 2N − 1}

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}

Ofer Shir Introductory MathProg for EC GECCO’25 42 / 59



MP in practice CSP and the N-Queens

N -queens: OPL implementation [CSP]
int N = ...;
range R = 1..N;

dvar boolean queen [R][R];
// NO OBJECTIVE FUNCTION !
subject to {

forall (s in R) {
sum (t in R) queen[s][t] == 1;

sum (t in R) queen[t][s] == 1;
}

forall (k in (-N+2)..(N-2)) {
sum(s1 in R, t1 in R: t1-s1==k) queen[s1][t1] <= 1;

}
forall (k in 3..(2*N-1)) {

sum(s1 in R, t1 in R: s1+t1==k) queen[s1][t1] <= 1;
}

}
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MP in practice TSP as an ILP

the traveling salesman problem

• The archetypical Traveling Salesman Problem (TSP) is posed as
finding a Hamilton cycle of minimal total cost. Explicitly, given a
directed graph G, with a vertex set V = {1, . . . , d} and an edge set
E = {〈i, j〉}, each edge has cost information cij ∈ R+.

• Black-box formulation: cyclic permutations

[TSP-perm] minimize
d−1∑
i=0

cπ(i),π((i+1)modd)

subject to:
π ∈ P (d)

π

(9)

• But this is clearly not an MP, since it does not adhere to the
canonical form!
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MP in practice TSP as an ILP

ILP formulation [Miller-Tucker-Zemlin]
TSP as an ILP utilizes d2 binary decision variables xij :

[TSP-ILP] minimize
∑
〈i,j〉∈E

cij · xij

subject to:∑
j∈V

xij = 1 ∀i ∈ V∑
i∈V

xij = 1 ∀j ∈ V

xij ∈ {0, 1} ∀i, j ∈ V

(10)

But is this enough? What about inner-circles?

d integers ui are needed as decision variables to prevent inner-circles:

. . .
ui − uj + 1 ≤ (d− 1) (1− xij) ∀i, j ∈ 1 . . . d
d ≥ ui ≥ 2 ∀i ∈ {2, 3, . . . , d}

(11)
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MP in practice TSP as an ILP

the EC perspective
• Unlike GAs, which require dedicated mutation and crossover

operators for cyclic permutations, the challenge here is mostly
about obtaining an effective formulation
• Perhaps counter-intuitively, increasing the order of magnitude of

constraints does not necessarily render the problem harder to be
solved as MP.
• The given MTZ formulation for TSP is itself of a polynomial size;

an alternative formulation possesses O
(
2d
)

subtour elimination
constraints, though impractical for large graphs.
• In any case, TSP’s integral hull is unknown; an NP-hard problem.

• Note that EC researchers have started looking at TSP and other
problems in a gray-box perspective: Darrell Whitley’s tutorial on
“Graybox Optimization and Next Generation Genetic Algorithms”.
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MP in practice TSP as an ILP

TSP on undirected graphs: OPL implementation
Addressing the undirected TSP by means of “node labeling” –
assuming a single visit per node:

// Data preparation
tuple Raw_Edge {int point1; int point2; int dist; int active;}
{Raw_Edge} raw_edges = ...;

//Every edge is taken in both directions due to the graph
nature, using ‘union’:

tuple Edge {int point1; int point2; int dist;}
{Edge} edges = {<e.point1, e.point2, e.dist> | e in raw_edges :

e.active == 1}
union {<e.point2, e.point1, e.dist> | e in raw_edges :

e.active == 1};
{int} points = {e.point1 | e in edges};
int d = card (points); //set cardinality, i.e., number of cities
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MP in practice TSP as an ILP

TSP in OPL continued: core model

dvar int edge_selector[edges] in 0..1;
dvar int label[points] in 0..d-1;

minimize sum (e in edges) edge_selector[e]*e.dist;

subject to {
forall (p in points)
ct_in_deg_equal_one:

sum (e in edges : e.point2 == p) edge_selector[e] == 1;
forall (p in points)
ct_out_deg_equal_one:

sum (e in edges : e.point1 == p)edge_selector[e] == 1;
forall (e in edges : e.point2 != 1)
ct_monotone_labeling:

edge_selector [e] == 1 => label [e.point1] ==
label[e.point2]-1;

}
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extended topic: multiobjective exact optimization

extended topic: multiobjective optimization
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extended topic: multiobjective exact optimization

multiobjective exact optimization

Diversity Maximization Approach (DMA) [11] key features:
• Iterative-exact nature: obtains a new exact non-dominated

solution per each iteration
• Criteria exist for the attainment of the complete Pareto frontier
• Fine distribution of the existing set already found is guaranteed
• Optimality gap is provided – what may be gained by continuing

constructing the Pareto frontier
• Solves any type of frontier (even if seems as a weighted sum)
• Importantly, DMA is MILP if the original problem is MILP

M. Masin and Y. Bukchin, 2008, “Diversity Maximization Approach for
Multi-Objective Optimization”, Operations Research, 56, 411-424.
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extended topic: multiobjective exact optimization

“high-level” DMA for M -objectives linear problems

input : a linear program featuring M objectives
1 Find an optimal solution for a weighted sum of multiple objectives

with any reasonable strictly positive weights. If there is no
feasible solution – Stop.

2 Set the partial efficient frontier equal to the found optimal
solution. Choose optimality gap tolerance and maximal number
of iterations.

3 If the maximal number of iterations is reached – Stop, otherwise
add M binary variables and (M + 1) linear constraints to
the previous MILP model.

4 Maximize the proposed diversity measure. If the diversity measure
is less than the optimality gap tolerance – Stop, otherwise add
the optimal solution to the partial efficient frontier and go to Step
3.

output: Pareto set, Pareto frontier
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discussion
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discussion

quick summary
• MP is a well-established domain encompassing a variety of

algorithms with underlying rigorous theory.
• Broad knowledge of MP is valuable for both EC theoreticians and

practitioners
• Given convex problems, MP is most likely the fittest tool
• Given discrete optimization problems that may be formulated as

MILP/MIQP – it makes sense to first try MP-solvers
• MP is inherently adjusted to constrained problems (unlike EC...)
• Effective MP formulation lies in the heart of practical

problem-solving
• Robustness to uncertainty, Pareto optimization, and hybridization

are solid extensions to classical MP

O.M. Shir and M. Emmerich, “Multi-Objective Mixed-Integer Quadratic
Models: A Study on Mathematical Programming and Evolutionary
Computation”. IEEE TEC 29(3) (2025) 661–675 doi
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discussion

communities and resources

• INFORMS: The Institute for Operations Research and the
Management Sciences; https://www.informs.org/

• COIN-OR: Computational Infrastructure for Operations Research
– a project that aims to “create for mathematical software what
the open literature is for mathematical theory”;
https://www.coin-or.org/

• MATHEURISTICS: model-based metaheuristics, exploiting MP in
a metaheuristic framework; http://mh2018.sciencesconf.org/
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discussion

partial list of languages and solvers
• Modeling languages:

1 GAMS
2 AMPL
3 OPL
4 ( python (Gurobi-Python, SciPy), MATLAB, ...)

• Environments and modeling systems:
1 OR-Tools — Google Developers (open source!)
2 IBM ILOG CPLEX (academia-free)
3 Gurobi
4 sas
5 YALMIP

• Third-party solvers (free and open-source):
1 CBC (via Coin-OR)
2 GLPK (GNU Linear Programming Kit)
3 SoPlex
4 LP SOLVE
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benchmarking and competitions

• MIPLIB: the Mixed Integer Programming LIBrary
http://miplib.zib.de/

• CSPLib: a problem library for constraints
http://csplib.org/

• SAT-LIB: the Satisfiability Library - Benchmark Problems
http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html

• TSP-LIB: the Traveling Salesman Problem sample instances
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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