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Abstract

Soil sampling design for assessment of soil nutrients content in

an agricultural crop field can be aided by ancillary data to reduce

sample-size – a main factor affecting the economic viability of a

survey. Most soil sampling methods assume a given sample-size

reflecting a predefined budget, without aiming to minimize it, thus

not providing a practical solution for precision agriculture. In this

study we formulate a bi-objective optimization task for soil-sample

design that minimizes the conditioned Latin hypercube sampling

criterion (cLHS) for a full representation of the soil information

spectrum, while concurrently maximizing the distance between sam-

pling locations for lower estimation error. We present a two-step

approach for finding a minimal sample-size, by generating Pareto-

optimal sampling schemes of varying sizes using an evolutionary

multiobjective algorithm, then scrutinizing the solutions grouped

by size with information-theory statistics to identify a satisfactory

sample-size at which the rate of marginal information gain is de-

clining. Individual schemes are then evaluated and ranked, as a

decision support tool to aid in choosing a single design. We have

applied the methods in field experiments, devising sampling-plans

for different purposes. The extracted soil analysis data was used to

verify management zones delineation, and can be used to calibrate

a model of remote-sensed data to produce digital soil maps.
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Chapter 1

Introduction

Since the early settlements of humankind, maintaining favourable conditions

for plants growth has been a limiting factor on the scaling of human civiliza-

tion. In the 19th century new perceptions of plant nutrition promoted the use

of chemical fertilizers for crop production, followed by a widespread adoption

of high-yield crop varieties and industrial agricultural practices in the mid 20th

century, known as the Green Revolution [29]. Research-based application proto-

cols prescribing optimal nutrients dosage for each crop have become the stan-

dard cultivation method. Although world population had more than doubled

in the period between 1960 and 2010, the production of cereal crops tripled,

with only a 30% increase in land area cultivated [48]. However, prevailing uni-

form application methods, coupled with the difficulty to estimate within-field

spatial variation of available soil nutrients perpetuate a sub-optimal state, as

some areas are fertilized below the recommended level, thus not reaching the

maximal potential yield, while other areas are over-fertilized, causing a waste

of resources and amplifying the environmental stress on downstream water-

ways due to leaching of excess nutrients.

Recent technological advancements facilitate the use of variable rate applica-
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tion, which utilizes adaptive dosage according to prescription maps. Although

visualizing dynamic soil processes in real time has been an elusive goal in soil

science, it could nowdays be achieved by the convergence of several fields

of science and technology, thus facilitate the implementation of site-specific

management practices that promote soil conservation [34]. However, lacking

a reliable diagnostic measure of soil nutrients content by pure means of remote

sensing, Precision Agriculture (PA) relies on soil sampling and laboratory anal-

yses to calibrate and validate remote-sensed data to produce digital soil maps.

Spatial coverage sampling strategies, such as grid sampling or stratified

random sampling, provide a sound geographical distribution but require ex-

tensive sampling to generate effective spatial models [61]. The recommended

range of soil samples to obtain a reliable spatial interpolation using geostatis-

tical methods has been assessed to be at least 100 to 150 to provide six to ten

estimates within the expected effective range [46]. Kerry et al. [32] advised

that a sampling grid for spatial prediction should exhibit spacing no coarser

than half the range of spatial dependence of the soil variable and ideally one

third to two fifths of the range. In the absence of any prior information about

the spatial scale of variation, a reconnaissance survey can provide a first ap-

proximation. If the property of interest appears related to ancillary data, such

as those from remote and proximal sensing they could be used to approximate

the spatial scale [32]. These guidelines set the bar high above economic viabil-

ity in commercial agricultural systems.

An alternative approach for sample design, adapted from experimental de-

sign is the so-called Conditioned Latin Hypercube Sampling (cLHS) [43], which

accounts also for a predefined feature space. cLHS aims to maximize the strat-

ification of the feature space in the sample while preserving the data distri-

bution, yet it may produce uneven coverage of the geographical space, thus
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reducing the overall estimation quality [25].

Hengl et al. [27] concluded that prediction accuracy in a sample may be

improved by covering both the feature and the geographical spaces. Gao et

al. [25] added a spatial measure to cLHS by aggregation into a single objective

function, and achieved smaller mapping errors in comparison to strictly spatial

or feature space methods. Lark [39] demonstrated the feasibility of multiob-

jective optimization of spatial sampling design using the AMOSA (Archived

Multiobjective Simulated Annealing) algorithm [3] on a theoretical use-case,

where the objective functions are the total distance travelled for sampling and

the variance of the sample mean.

There is no single best sampling design for digital soil mapping, as the

adequacy of a sampling scheme depends on the method used for mapping

the soil. Sampling methods can be distinguished as design or model based ap-

proaches [10]. In design-based methods locations are selected by probability

(random) sampling without using a known spatial model in estimation. This

approach includes Geometric designs, such as Spatial Coverage sampling [52]

and Adapted Experimental designs, of which cLHS is a primary example. In

a model-based approach a stochastic model is used in estimation, for instance

a linear regression or Kriging model. As the model already contains a random

error term, probability sampling is not required in this approach, which opens

up the possibility of optimized non-probability sampling [10]. Model-based

sampling design requires prior information about the spatial variation (i.e. the

variogram), as well as assumptions about the mean of the study variable and

an explicit tolerable variance (error) range, therefore it is not suitable in many

scenarios.

Following these studies, we elevate the perspective of multi-objective sam-

ple design optimization to the realm of evolutionary algorithms, and propose
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herein an experimental design-based approach for obtaining a sample design

by solving a bi-objective optimization problem of concurrently maximizing the

feature space stratification and the geographical distribution of the sampling

points. In doing so, we aim to provide sampling schemes for various purposes

that would cover of the entire area and portray the full information spectrum

of the soil, supported by statistical analysis to assist in plan selection and scal-

ing down the sample-size – a significant contributor to the operational costs.

Given the complex nature of soil attributes, geostatistical methods consider

target variables as realizations of random fields [57]. These methods infer

statistical parameters and calculate predictions based on partial observations

of the random field realization. Assuming a normally distributed stochas-

tic process with second-order stationarity (a constant mean and an autocovari-

ance function dependent solely upon the distance between any two values),

sampled data can be interpolated by the widely used Ordinary Kriging (OK)

method [40], which provides a best linear unbiased prediction (BLUP) of val-

ues at un-sampled locations. OK requires a positive definite model of spatial

variability, calculated as a function fitted to an experimental variogram of the

sample data. The reliability of the model depends on the capacity of sample

information to capture the variability of the observed phenomenon, affected

primarily by the number of observations [61].

The use of ancillary data can reduce prediction errors associated with con-

traction in sample-size and facilitate cost-effective sampling [62]. In this con-

text, ancillary data is considered as any source of spatial information with some

relation to soil properties and in the form of a digital soil map. Importantly,

high-resolution data – e.g., multi-spectral aerial imaging, proximal sensing or

yield maps – are available at a rather low cost. Although the exact relation

of these data to soil attributes may be unknown, a spatial variability model
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can be formed to guide soil sampling design [4] and density [33], as well as to

improve the approximation accuracy as a covariate in co-Kriging [49].

The quality of a sampling scheme can be evaluated a priori by the uncer-

tainty of prediction maps resulting from interpolation of known ancillary data

values at sample locations, reflected by metrics such as Mean Ordinary Kriging

Variance (MOKV), subject to the assumption that the attribute under study is a

realization of a stationary Gaussian random function [28], or by the Root Mean

Square Error (RMSE) between predicted and true values at all locations. We

studied additional metrics to support agricultural soil-survey planning, focus-

ing on practical questions concerning sample-sizing and composition, hence

we introduce in this work a preferential index for ranking candidate sampling

schemes according to expected MOKV and information-theoretic statistical

measures, calculated by the Kullback-Leibler Divergence (DKL), a quantifier

of the similarity between two probability distributions, [37] and Akaike Infor-

mation Criterion (AIC) [1], which estimates the relative quality of a statistical

model for a given set of data.

The current study targets the following research question:

Which model captures the effectiveness as well as the cost-efficiency

of sampling-plans when accounting for both diversity and repre-

sentation?

The proposed contributions of the current study are:

1. Modelling of objective functions quantifying sampling-plans designed

for the efficient use of ancillary data;

2. Formulation of multiobjective optimization problems for optimizing sam-

pling strategy;

3. Solving these optimization problems in an agricultural farm using real-

field data.
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The Thesis has the following structure: In Chapter 2 we provide a short in-

troduction to Evolutionary Algorithms focusing on the Non-dominated Sort-

ing Genetic Algorithm II (NSGA-II) used in this study. Chapter 3 outlines

the geostatistical learning challenge – we describe the data processing steps,

specify our notation, defining the objective functions and motivate the multi-

objective optimization perspectives. Our practical observations on real-world

case-studies are reported in Chapter 4 where we also discuss the attained so-

lutions. Finally, we summarize our work and findings in Section 5, where we

also draw possible directions for future work.
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Chapter 2

Computational Methodology

Summary

In this chapter we present some historical milestones in optimization tech-

niques, then introduce the general concepts of Evolutionary Algorithms (EAs),

the Genetic Algorithm (GA) and Evolutionary Multiobjective optimization Al-

gorithms (EMOAs); in addition, we describe NSGA-II, the particular EMOA

used in this study.

2.1 Optimization: a brief history

Optimization, derived from Latin optimum, neuter singular of optimus (“best”,

”very good”), meaning the best or most favorable condition under specific sets

of comparable circumstances.1 In the context of applied mathematics, opti-

mization can be defined as a quantitative and systematic methodology that

represents a problem as consisting of three core elements: variables, objectives,

and constraints. The objective functions are to be minimized (or maximized,

1Online etymology dictionary: www.etymonline.com/word/optimum
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2.1 Optimization: a brief history

without loss of generality) by adjusting the decision variables, while satisfy-

ing the given constraints.1 Formally, an optimizer ~x∗ adheres to this general

formulation:

~x∗ := arg min
~x

f(x1, x2, ..., xn),

subject to gi(x1, x2, ..., xn) ≤ 0 ∀i = 1, . . . ,m,

(2.1)

where f is the objective function, xk (k = 1, . . . , n) are the decision variables,

and gi (i = 1, . . . ,m) are constraint functions.

Early Greek mathematicians solved optimization problems related to their

geometrical studies. Circa 300 BC Euclid considered the minimal distance be-

tween two points, and proved that a square has the largest area among the

rectangles with a given perimeter length [35]. The discovery of derivatives, at-

tributed to Fermat and Lagrange among other scholars in the 17th century, es-

tablished calculus-based formulae for identifying optima, whereas in the 18th

century Newton and Gauss proposed iterative methods for moving towards

an optimum, and Fourier proved that certain problems could be defined as a

system of linear inequalities.

The next milestone took place in the 1930’s with the conception of Linear

Programming (LP) by Kantorovich and Koopmans, followed by the develop-

ment of the Simplex method by Dantzig in 1947, an algorithm that became a

state-of-the-art tool and its variants are still in use today. In the 1950’s the uni-

fying tool of linear and integer programming (where variables are only of inte-

gral nature) became available, and the area of Operations Research got inten-

sive attention [53]. In parallel, a broad understanding of Convex Optimization

[8] has been accomplished throughout the years. However, even with advance-

1Brief History of Optimization: empowerops.com/en/blogs/2018/12/6/
brief-history-of-optimization
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2.2 Evolutionary Algorithms (EAs)

ments in computation capabilities, mathematical methods are inadequate for

non-convex problems, especially with high-dimensional search spaces, such is

the nature of many real-world problems.

Figure 2.1: A schematic taxonomy diagram of mathematical optimization
branches [55].

2.2 Evolutionary Algorithms (EAs)

This shortcoming of mathematical optimization motivated the research on prob-

lem solving in Nature, leading to the foundation of the Evolutionary Comput-

ing field, a class of stochastic optimization methods that abstract the process of

natural evolution by breeding a population of solutions. The scope of Evolu-

tionary Algorithms (EAs) covers several meta-heuristics, the most prominent

are: Genetic Programming (GP), introduced by Friedberg in 1958; Evolution

Strategies (ES), developed by Rechenberg and Schwefel in the late 1960’s; and
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2.2 Evolutionary Algorithms (EAs)

Genetic Algorithms (GA), proposed by Fogel et al. and Holland in the 1970’s.

EAs differ by their solution representation, selection mechanism and the mu-

tation operator, making them appropriate to use in different applications. Al-

though initially distinct, the lines between the above strands of research are

becoming blurred, with representation and strategies being used interchange-

ably between the algorithms. As such, today it is common to use the term

evolutionary algorithm to encompass all of the above approaches [9].

EAs share the concept of directing a population of solutions through itera-

tive variation and selection to improve the fitness of their offspring in a certain

environment (the modeled problem). By inclination towards better population

members the solution is refined, gradually approaches the global optimum.

The use of a population helps to achieve an implicit parallelism [15], which

makes an EA computationally attractive for solving difficult problems.

The generalized EA, adapted from [2] is presented in Algorithm 1. The pro-

cedure begins with the formation of an initial population at random (or accord-

ing to a predefined scheme). Then, a loop consisting of the steps evaluation

(fitness assignment), selection, recombination, and/or mutation is executed a

certain number of iterations. Each loop iteration is called a generation, and

often a predefined maximum number of generations serves as the termination

criterion of the loop, but also other conditions, e.g., stagnation in the popula-

tion or existence of an individual with sufficient quality, may be used to stop

the simulation. In elitism mode the parent population in each generation takes

part in the environmental selection, thus ensuring the best solutions found so

far are always propagated to the next generation, regulating a monotonically

non-degrading performance. The best individuals in the final population rep-

resent the outcome of the EA [63].

Notation-wise, µ (mu) denotes the number of parents and λ (lambda) stands

10



2.3 The Genetic Algorithm (GA)

for the number of offspring, whereas a plus sign indicates the implementation

of elitism, and a comma otherwise. Thus, an elitist-EA with a population of 10

parents and 10 offspring would be denoted as (10+10)-EA.

Algorithm 1 The Generalized Evolutionary Algorithm

t← 0 {t: generation}
P (t)← init() {P: population}
evaluate(P (t))
repeat
P ′(t)← sexualSelection(P (t))
P ′′(t)← variation(P ′(t))
evaluate(P ′′(t))
if elitism then
Q(t)← P (t)

else
Q(t)← ∅

P (t+ 1)← environmentalSelection(P ′′(t)
⋃
Q(t))

t← t+ 1
until stopping criterion is met

Next, we describe the GA as the prototype of the algorithm used to solve

the problem at hand.

2.3 The Genetic Algorithm (GA)

Heredity, the passing of traits from parents to their offspring, is a key concept

in the the theory of evolution and natural selection [14]. In genetics, a strong

distinction is drawn between the genotype and the phenotype; the former con-

tains genetic information, whereas the latter is the physical manifestation of

that information [9]. As species reproduce, variation is introduced through re-

combination of the parents genes and occasional mutation, whereas survival of

the fittest individuals is regulated by environmental selection acting upon the

phenotype. The Genetic Algorithm (GA) simulates the evolutionary process

11



2.3 The Genetic Algorithm (GA)

by maintaining and iteratively improving a population of candidate solutions,

each encoded as a binary sequence and subject to variation operators, while

the selection mechanism in the form of fitness evaluation is applied to the cor-

responding phenotype. As the search evolves, the population includes fitter

and fitter solutions, and eventually it converges, meaning that it is dominated

by a single solution. Holland presented a proof of convergence (the schema

theorem [30]) to the global optimum given an infinite population size with

binary chromosome representation [36].

In canonical GAs, solution vectors are represented as binary strings. The

mutation operator performs a bit-flip in each coordinate with a small prob-

ability Pm ∈ [0, 1], whereas recombination is realized as a crossover of bit

sequences with probability Pc ∈ [0, 1]. Selection operates in two stages: the

sexual selection picks a couple for mating among the candidates, and the en-

vironmental selection assesses the performance of the new offspring, ensuring

survival of the fittest.

Tournament selection is a commonly used mating selection strategy, in which

n individuals are randomly picked from the population of size N without

replacement, and the winner is the highest fitting individual. Calibration of

n � N controls the selection pressure, which is analogous to the convergence

rate of the procedure. A key challenge in GA design is the balance between

exploration of new regions of the search space, stimulated by mutation, and

exploitation of the vicinity of already discovered fit solutions, encouraged by

crossover and selection [9].

The canonical GA usually operates with an identical population size for

parents and offspring and with constant control parameters (Pm, Pc). Although

shown to be powerful problem solver that have been successfully applied to

various real-world problems, obtaining the best results requires a careful de-

12



2.4 Multiobjective Optimization

sign of the algorithm using any domain knowledge available.

Some limitations of GAs are inherent to all EAs: i) There is no guarantee

that an optimal solution will be found in a finite time (or number of itera-

tions); ii) progress towards better solutions may be intermittent rather than

gradual, and iii) the algorithm relies on feedback in the form of fitness evalua-

tions, which can be difficult or expensive for some problems [9].

Although the original implementation of the traditional GA considers genes

as binary digits, the flexibility of the framework facilitates solution representa-

tion of any data structure, and in certain cases, e.g. of combinatorial decision

variables, a pure phenotype representation is more straightforward (see Sec-

tion 3.8).

2.4 Multiobjective Optimization

Real-world optimization scenarios often involve multiple, conflicting objec-

tives within implicit feasibility constraints. For example, in the context of

sample design, discrepancy is evident between spatial dispersion and feature

space coverage (see Section 3.8), as improvement of one objective comes at the

expense of the other. Therefore, the algorithmic goal alters from identifying

the best solution to obtaining a range of good compromises amongst the objec-

tives; the role of the decision-maker (DM) now becomes to select among this

set of solutions.

Traditionally, multiobjective optimization problems are often solved using

scalarization techniques [42], in which the weighted normalized objective func-

tions are aggregated (or reformulated as constraints), and then a constrained

single-objective problem is solved. This approach is called a-priori [36], since

the weights express the DM’s preference in advance. One can consider a multi-

13



2.4 Multiobjective Optimization

start option, i.e., to run the EA several times with different aggregation param-

eters, and collect solutions in an archive [63]. This approach can possibly lead

to a set of optimal solutions, but the complexity of the parameters’ tuning re-

quires some assumptions about the search landscape (i.e., estimation of the

location of optimal solutions) [36], while there is an uncertainty regarding the

revelation of the entire set of efficient solutions, which makes interpretability

of the search space more difficult, thus not facilitating the DM’s confidence

that a final solution is the most preferred one or at least close to that [21].

Another classical multiobjective optimization strategy is to optimize only

one objective, and constrain the other objective to be strictly lower than its

value obtained in the previous optimization run (assuming minimization), re-

sulting with a vector of optimal solutions per each run of a single-objective EA

with an additional constraint [63]. This approach encounters the same limita-

tions posed by scalarization.

Evolutionary Multiobjective Algorithms (EMOAs, also termed MOEA or

EMO), originating in the 1990’s [23], have become established as a separate

subdiscipline combining the fields of evolutionary computation and classical

multiple criteria decision making (MCDM) [63]. The growing popularity of

EMOAs, which generalize the idea of single-objective EAs to a higher dimen-

sional objective function space, is mainly attributed to the fact they do not

require any derivative information and to their relatively simple implementa-

tion and flexibility – which altogether make them suitable for a broad range of

applications [21]. As a by-product, EMOA-based solutions have the potential

to assist in revealing important hidden knowledge about a problem – a matter

which is difficult to achieve otherwise [15].

The concept of Pareto dominance, named after Vilfredo Pareto [44], is of

fundamental importance for multiobjective optimization, as it allows to com-

14



2.4 Multiobjective Optimization

pare two objective vectors in a precise sense, according to the following for-

mulation.

Given a multiobjective optimization problem with m objectives, let an ob-

jectives vector in Rm be denoted as

~f (~x) = (f1 (~x) , f2 (~x) , . . . , fm (~x))T ,

and let all its coordinates assumed to be subject to minimization. A partial order

is defined on the m-dimensional objective space, F = ~f(X), by means of the

Pareto domination concept: given any ~f (1) ∈ Rm and ~f (2) ∈ Rm, it is stated that

~f (1) weakly dominates ~f (2), noted as ~f (1) � ~f (2), if and only if the following

holds:

∀i ∈ {1, . . .m} : f
(1)
i ≤ f

(2)
i . (2.2)

We also consider the strict Pareto domination:

~f (1) ≺ ~f (2) ⇐⇒ ~f (1) � ~f (2) ∧ ∃i ∈ {1, . . . ,m} : f
(1)
i < f

(2)
i . (2.3)

We then state that ~f (1) and ~f (2) are incomparable or indifferent, noted as ~f (1)||~f (2),

if and only if ~f (1) � ~f (2)∧ ~f (2) � ~f (1). For any non-empty compact subset ofRm,

say F, there exists a non-empty set of minimal elements for the partial order �

[19]. Non-dominated points are the set of minimal elements for �:

FN =
{
~f ∈ F|@~f ′ ∈ F : ~f ′ ≺ ~f

}
. (2.4)

The goal of multiobjective optimization is to obtain the non-dominated set for

F = ~f(X), entitled the Efficient Frontier (also known as Pareto front, see Fig-

ure 2.2), and its pre-image in X, the so-called Pareto set.

Unlike single criterion problems, a multiobjective problem has multiple,
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2.4 Multiobjective Optimization

Figure 2.2: The Pareto frontier is depicted in red for a bi-objective problem of
minimizing both f1, f2. Solution-points (i) and (v) constitute the ideal points
for f1 and f2, respectively.

possibly infinite number of solutions, rendering the calculation of the entire

Pareto set infeasible. Therefore, the target is to find an approximation of the

Pareto set given available computational resources.

Similar to other a posteriori MCDM methods [15], most EMOAs are de-

signed to gradually approach sets of Pareto optimal solutions that are well-

distributed across the objective and/or the decision spaces – a multiobjec-

tive task by itself [63]. The distinction between different classes of EMOAs

is mainly due to the paradigm used to define the selection operator, whereas

the choice of the decision-space variation operators is most likely problem-

dependent [21].

There is no guarantee that an EMOA will find any Pareto-optimal solution

in a finite number of evaluations for an arbitrary problem. However, the pref-
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2.4 Multiobjective Optimization

erence of non-dominated and isolated solutions guarantees that population

members iteratively progress towards the Pareto-optimal front [15].

The main contemporary paradigms for EMOAs’ design are [21]:

I Pareto-based selection, which uses a two-level ranking scheme. The Pareto

dominance relation governs the first ranking and contributions of points

to diversity is the principle of the second level ranking, which applies to

points that share the same rank in the first cycle;

II Indicator-based approaches which implicitly measure convergence as well

as spread (for instance, the hypervolume or R2 indicators) for the perfor-

mance of an approximation set to guide the search; and

III Decomposition-based methods, in which the problem is decomposed into

several subproblems, each one of them targeting different parts of the

Pareto front, whereas each subproblem is assigned with different weight-

ing of a scalarization method.

Elitism has shown to improve the performance of EMOAs [15], and is a

common design feature. The implementation is not as straightforward as in

single-objective EA, mainly due to the large number of possible elitist solu-

tions, considering all non-dominated solutions discovered so far [36]. Elitism

is implemented in EMOAs by either keeping elitist solutions in the popula-

tion, or by storing elitist solutions in an external secondary list (archive) and

reintroducing them to the population [11].

Real-world optimization problems are typically bound with constraints that

must be satisfied. Single-objective GAs employ one of four constraints han-

dling strategies: (i) discard infeasible solutions, (ii) penalize the fitness of in-

feasible solutions, (iii) if possible, customize variation operators to produce

only feasible solutions, and (iv) repair infeasible solutions [36]. They are all
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applicable in the multiobjective case, whereas the single penalty function in

(ii) is replaced by another mechanism, such as multi-dimensional penalty or

the constraints-domination concept [16].

The resulting Pareto-optimal set is a portfolio of candidate solutions for

further consideration by the DM, often involving non-technical, qualitative

and experience-driven information. By narrowing down the choices and vi-

sualizing the trade-offs between the objectives, EMOAs have the potential to

facilitate better decision making.

2.5 NSGA-II

NSGA-II (Non-dominated Sorting Genetic Algorithm II) [16] is one of the most

popular EMOAs. Being a Pareto-based procedure, it employs an elitist strategy

with a fast non-dominated sorting selection approach and an explicit diversity

preserving mechanism [15].

NSGA-II follows the generic EA procedure (Algorithm 1), integrating a bi-

level selection operator with Pareto non-domination preference as the primary

criterion, and a density measure as a secondary criterion.

The fast non-dominated sorting procedure (Algorithm 2) reduces the compu-

tational complexity of Pareto order ranking (a.k.a. Pareto-sort) by iteratively

identifying non-dominated solutions, then excluding them from subsequent

pairwise comparisons. The crowding distance (Algorithm 3) is a measure of the

objective space surrounding a point which is not occupied by any other so-

lution in the population. It is calculated by estimating the perimeter of the

cuboid formed by the nearest neighbors in the objective space as the vertices

(Figure 2.3) [15]. This procedure is repeated for each objective function by

sorting the population in an ascending order, then the value is calculated as

18



2.5 NSGA-II

the absolute normalized difference in the function values of two adjacent solu-

tions, whereas the boundary solutions are assigned an infinite distance value,

ensuring their inclusion. The overall crowding-distance value is calculated as

the sum of individual distance values corresponding to each objective [16].

The crowded-comparison operator (�n) formulates these measures. Given

the solution’s non-domination rank (irank) and crowding distance (idistance), a

partial order �n is defined as:

i �n j if (irank < jrank)

or ((irank == jrank) and (idistance < jdistance))

such that non-domination rank is the primary criterion to favor a solution,

whereas the distance measure is used as a tie-breaker between solutions of the

same non-domination rank.

A fixed population size of N is maintained by NSGA-II. At each generation

t, the offspring population Qt is created by using the parent population Pt and

problem-specific variation operators. Thereafter, the two populations are com-

bined to form a new population Rt = Pt
⋃
Qt of size 2N , which is then classi-

fied into different non-domination classes. Subsequently, the new population

Pt+1 is filled by points of different non-domination fronts, one at a time, start-

ing with the first non-domination front (of class one), continues with points of

the second non-domination front, and so on. Since |Rt| = 2N , not all points

can be accommodated in N slots available for the new population, hence the

points of the last front, which could not be fully accommodated, are sorted in

a descending order of their crowding distance values and the top points of the

ordered list are chosen, until the population size |Pt+1| = N .

The non-dominated sorting approach ensures that the best solutions so-far

are kept during the search, effectively implementing elitism without using a
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2.5 NSGA-II

Figure 2.3: The crowding distance measure, calculated by the rectangle en-
veloping each point’s nearest neighbours, outlined here for point i by the
dashed line.

secondary external population [15].

An advantage of the crowding distance measure is the density calculation

around a solution without requiring a user-defined parameter. When the com-

bined parent and offspring population contains more than N non-dominated

solutions, NSGA-II becomes a pure elitist GA where only non-dominated so-

lutions participate in crossover and selection. This leads to a straightforward

implementation, emphasizing population size as an important parameter since

no external archive is used to store discovered non-dominated solutions [36].

The overall complexity of the algorithm isO(MN2) (whereM is the number

of objectives and N is the population size), governed by the non-dominated

sorting part of the algorithm [16].
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2.5 NSGA-II

Algorithm 2 fast-non-dominated-sort - NSGA-II [16]

Input: P {current population}
for all p ∈ P do
Sp = ∅
np = 0
for all q ∈ P do

if p ≺ q then
{if p dominates q}
Sp = Sp

⋃
q {Add q to the set of solutions dominated by p}

else
if q ≺ p then
{Increment the domination counter of p}
np = np + 1

if np == 0 then
{p belongs to the first front}
prank = 1
F1 = F1

⋃
p

i = 1 {Initialize the front counter}
while Fi 6= ∅ do
Q = ∅ {Used to store the members of the next front}
for all p ∈ Fi do
nq = |Sp|
for all q ∈ Sp do
nq = nq − 1
if nq == 0 then
{q belongs to the next front}
qrank = i+ 1
Q = Q

⋃
q

i = i+ 1
Fi = Q
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2.5 NSGA-II

Algorithm 3 Crowding-distance-assignment - NSGA-II [16]

input: I {a non-dominated set}

` = |I| {number of solutions in I}

for each i = 1, . . . , ` do
I[i]distance = 0 {initialize distance}

for each objective m do
I=sort(I,m) {sort using each objective value}
I[1]distance = I[`]distance =∞ {so that boundary points are always selected}

for i = 2 to (`− 1) do
{for all other points}
I[i]distance = I[i]distance + (I[i+ 1]m-I[i− 1]m)/(fmaxm − fminm )
{normalized difference in objective space m between adjacent points}
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Chapter 3

From Ancillary Data to

Sampling-Plans

Summary

In this chapter we describe the utilization of an EMOA (Chapter 2) to obtain

sampling plans with good coverage of both the geographic and the feature

spaces, accounting for ancillary data. Information-theoretic statistical mea-

sures are then applied with the goal of identifying a minimal yet effective sam-

pling plan for validating the partitioning of Site-Specific Management Units

(SSMUs) in a 37 ha agricultural crop field.

3.1 Ancillary Data Collection

Ancillary data were recorded in the bare-soil field by the outset of the rainy

season, encompassing geospatial measurements of apparent electrical conduc-

tivity (ECa) measured with an electromagnetic induction (EMI) sensor using

a modified procedure outlined in [13], which consists of several sequential
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3.2 Preprocessing

steps employing EM38-MK2 (Geonics Ltd. Ontario, Canada) in dual opera-

tional mode (EMvertical and EMhorizontal) at different depth response profiles

(1.5 and 0.75 m, respectively) providing simultaneous measurements of both

ECa and apparent magnetic susceptibility (MSa) values [18]. The sensor was

connected to a differential global positioning system (GPS) with high plani-

metric accuracy. The precision and accuracy of ECa maps are affected by the

swath width of the ECa sensing range. Based on [22], we used 12–15 m par-

allel swath widths across the field at an average speed of 3 km h−1 with one

per second data collection frequency which yielded data points of one in every

0.85 m.

Remote sensing multispectral data were acquired at resolution of 6x6 cm

with a sensor (Parrot Sequoia, Paris, France) capturing four spectrum bands

(green, red, red edge and near infra-red) mounted on an unmanned aerial sys-

tem (Mavic Pro, DJI, Shenzhen, China). The fragmented data were processed

to an orthomosaic map with Pix4Dmapper (Pix4D S.A., Prilly, Switzerland), and

the Normalized Difference Vegetation Index (NDVI) calculated by the Red and

Near Infra-Red (NIR) bands:

NDV I =
NIR−RED
NIR +RED

(3.1)

3.2 Preprocessing

The outcome of ancillary data measurements are large datasets comprised of

different formats and resolutions. Some preliminary steps are required to stan-

dardize the layers to common units and spatial resolution before further pro-

cessing can take place.

Recorded points’ data were first merged into a single table and stripped
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3.2 Preprocessing

from comments, missing values and other non-informative rows or columns.

Since the GPS receiver was anchored on the vehicle, while the EMI was dragged

on a wagon 3 m behind, we shifted the values’ location five table rows ahead

to compensate for the constant gap. For computational speed this large dataset

was averaged over every 20 successive readings. Normal distribution is a

prerequisite for Ordinary Kriging (OK) interpolation [61], hence we ran ex-

ploratory analysis of the data histograms, with particular attention to deviance

from Normal distribution, measured by the skewness metric, which equals zero

for a symmetric distribution. Accordingly, the data was trimmed to 98% (re-

moving the lower and upper 1% values) followed by log transformation, alto-

gether shaping the distribution towards Normality.

The treated tables, containing 3,164 ECavertical and 3,415 ECahorizontal read-

ings, were converted into spatial objects [47] with a UTM coordinates refer-

ence system (CRS) assigned. This data structure enables the calculation of a

variogram spatial model that portrays the dependence between points values

as a function of their pairwise distances, and serves as an input for Kriging

interpolation. OK is a geostatistical method to predict values at unsampled

locations by computing a weighted average of the known values in the neigh-

borhood of each point (whereas weights are given by the variogram model)

[40]. In this study, the target for prediction was an empty grid covering the

field area with a cell size of a practical 1x1 m resolution. Field perimeter was

hand-drawn as a polygon in QGIS [59] and saved as a shapefile, providing a

mask for clipping the resulting estimation maps to the field boundaries. The

final step involves normalization of the values to the range [0,1]. Correlation

tests of EMI data showed high collinearity (Pearson’s R > 0.97) of the four

layers, a phenomenon that may disqualify the use of three of them. However,

in the absence of more meaningful ancillary data layers we opted to use them
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3.3 Site-Specific Management Units

nonetheless.

The NDVI raster layer was scaled-down to 1x1 m resolution by resampling,

then clipped to field perimeter and normalized to [0,1].

Finally, a unified normalized table of ancillary data was constructed from

the raster layers, consisting of five value columns with geo-referenced values.

3.3 Site-Specific Management Units

Cluster analysis of ancillary data layers is conducted to delineate Site-Specific

Management Units (SSMUs) using the fuzzy c-means clustering procedure

[26; 45]. A suite of cluster validity indices is used to assess the number of SSMUs:

Partition Coefficient (PC) [5], Partition Entropy (PE) [6], Fukuyama-Sugeno in-

dex (FS) [24] and the Calinski-Harabasz Criterion (CHC) [58]. The partitioning

results of multiple fuzzy c-means executions, with the number of clusters k in-

cremented within a considerable range, are evaluated by each of these indices.

By visualizing index values for all possible number of clusters, one can deter-

mine the optimal number of clusters in the data, indicated by local extrema

(maxima for PC and CHC, minima for PE and FS) [50].

The resulting partitions are quite irregular in shape and size, which may be

difficult to cultivate without advanced variable rate application central pivot

and it is completely unsuitable to current drip irrigation technology. Hence,

the fuzzy c-means clusters have undergone smoothing using a median filter

(Figure 3.1), as suggested by Córdoba et al. [12], so some spatial accuracy was

lost in favor of easier management. Multiple passes of an edge-detection fil-

ter (boundaries function in raster R-package) defines the feasible space by

excluding a buffer from the field perimeter and from the SSMUs boundaries.
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3.4 Notation

The unified table of ancillary data layers was used to search for an optimal

sample design according to the following notation.

Let N denote the number of feasible sampling sites, each associated with

spatial (x, y)-coordinates, {(xi, yi)}Ni=1 and ancillary data layers which assumed

to be acquired in dimensionality k, represented by vectors in Rk at each of the

N sites.

Let A denote the corresponding N × k-dimensional ancillary data matrix,

and importantly, let it define the feature space. At the same time, every sampling-

point is associated with spatial (x, y)-coordinates, {(xi, yi)}Ni=1, subscribing to

the so-called geographical space, which is defined by the field’s boundaries and

Figure 3.1: Clusters resulting from fuzzy c-means clustering (left) and smooth
management zones (SSMUs) after successive passes of median filter (right).
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3.4 Notation

operational constraints. These N pairs of coordinates constitute the geograph-

ical data matrix G:

G =


x1 y1

x2 y2
...

xN yN

 , A =


α1,1 α1,2 · · · α1,k

α2,1 α2,2 · · · α2,k

... . . . ...

αN,1 · · · · · · αN,k

 (3.2)

Pairwise distance calculations use the Euclidean metric, denoted by d
(G)
i,j for

every i, j ∈ {1, . . . , N}.

In our notation Z represents the augmented data matrix of dimension N ×

(k + 2), encompassing the N sites’ ancillary data and their geographical coor-

dinates:

Z =
(
G|A

)
. (3.3)

The ultimate target is to form a sampling-plan by locating n� N sites,

whose ancillary data vectors best represent the feature space’s distribution,

and at the same time, are spatially disperse concerning the geographical space.

At this point, it is assumed that the user provides a value of n and the discus-

sion on setting this value is postponed to Section 3.9.

Formally, a candidate sampling-plan p is a mapping π indicating the subset

selection of the n indices. Importantly, a candidate sampling-plan p is associ-

ated with the following components:

I An ancillary data matrix of dimension n× k, denoted by A(p), whose rows
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constitute a subset of A’s rows adhering to the mapping π

A(p) =


απ(1),1 απ(1),2 · · · απ(1),k

... . . . ...

απ(n),1 απ(n),2 · · · απ(n),k

 (3.4)

II A geographical data matrix G(p), defined in an equivalent manner

G(p) =


xπ(1) yπ(1)

...

xπ(n) yπ(n)

 (3.5)

III An augmented matrix Z(p):

Z(p) =
(
G(p)|A(p)

)
. (3.6)

Thus, the sample planning process can be translated into obtaining the sub-

set selection mapping π as a combinatorial optimisation problem in the domain

Z(p).

3.5 Conditioned Latin Hypercube Sampling

Minasny and McBratney [43] devised a method for obtaining optimal sam-

pling design in the presence of ancillary data, namely cLHS. This method

solves sampling design as a single-objective optimisation task. It aims to max-

imally stratify the multivariate distribution of ancillary data layers by forming

a Latin hypercube of their quantiles, while preserving the structure of their sta-

tistical correlation, for a representation of the full information spectrum. Im-
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3.5 Conditioned Latin Hypercube Sampling

portantly, this method accounts only for the feature space.

Given the ancillary data matrix A, the idea is to compute n statistical quan-

tiles per each of its k ancillary data column, then aim to place a single member

of each quantile in the sample. Given a candidate sampling-plan p of n sites,

defined by a mapping π, let η hold histogram information of A(p) with respect

to Z in the following manner: given the ith-quantile of A’s jth column, q(i)j , the

element η(p)
[
q
(i)
j ≤ απ(i),j < q

(i+1)
j

]
is the number of occurrences of απ(i),j with

values in the corresponding quantile. Accordingly, the first evaluation crite-

rion within cLHS is defined by

ψ1

(
A(p)

)
=

n∑
i=1

k∑
j=1

∣∣∣η [q(i)j ≤ απ(i),j < q
(i+1)
j

]
− 1
∣∣∣ . (3.7)

Also, let C(A) and C(A(p)) denote the correlation matrices of A and A(p), respec-

tively, both k×k-dimensional. The second evaluation criterion is the following:

ψ2

(
A(p)

)
=

k∑
i=1

k∑
j=1

∣∣∣C(A)
i,j −C

(A(p))
i,j

∣∣∣ . (3.8)

For categorical data such as soil classification the sub-objective is to match the

probability distribution for each of the classes. With strictly continuous an-

cillary data cLHS defines an objective function for evaluating p’s quality as a

weighted sum of the two criteria (ω1, ω2 > 0):

fcLHS (p) = ω1 · ψ1

(
A(p)

)
+ ω2 · ψ2

(
A(p)

)
−→ min . (3.9)

As recommended for general purpose [43] we set the weights ω1 = ω2 = 1. To

achieve dimensionless-scaling, the function fcLHS is normalized (i.e., divided

by number of sampling points n times ancillary data layers k).
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In terms of problem-solving, cLHS operates with a dedicated variation op-

erator, which swaps a random site within the subset mapping π of the candi-

date sampling-plan p with one of the elements in its complement πC , to obtain

π̃ (defining p̃):

{p, π} {p′, π′} such that δ (π, π′) = 1, (3.10)

where δ counts the differing subsets’ attributes.

Overall, cLHS culminates at a perfect stratification of the feature space, yet

it does not account for the geographic dispersion of the sampling points, thus

results in many impractical solutions. It was suggested to run cLHS for a sub-

set of the points, followed by a space-filling algorithm for the remaining points

[62]. In practice, we have found that this procedure still produces inefficient

solutions, and suggest as a remedy to augment the cLHS objective function

with a spatial dispersion objective function, as described in the following sub-

section.

3.6 max-min Diversity

The max-min diversity is one of the simplest notions for promoting dispersion.

Despite the simplicity of this diversity indicator, finding maximally diverse

subsets is an NP-hard problem [38]. Here, it aims to maximize the minimal

pairwise (geographical) distances among all sampling points:

f
d
(G)
min

(p) = min
π(i),π(j)

{
d
(G)
π(i),π(j)

}
−→ max i, j ∈ 1, . . . , n, i 6= j. (3.11)
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3.7 Bi-Objective Formulation

In the context of this study, we are interested in investigating the competition

between spatial dispersion and feature space coverage. Accordingly, given the

model functions presented in Sections 3.5 and 3.6, we formulate a bi-objective

optimisation task. For the sake of compatibility, we compute the multiplicative

inverse of f2, so that all objectives are subject to minimization:

[P0]

f1 := fcLHS (p) −→ min

f2 := 1/f
d
(G)
min

(p) −→ min

(3.12)

3.8 Algorithmic Approach

To solve the bi-objective task P0 (Eq. 3.12) we used the renowned NSGA-II al-

gorithm [16], utilizing the ecr R-package [7]. We set the parental and offspring

population sizes both to µ = λ = 10, and the maximally available iterations to

50,000. A simple mutation operator tailored to the current domain swaps a

random point in the sample set Z(p) with a random member of its complemen-

tary set (Z(p))C , as outlined by Algorithm 4.

The vector of objective functions is evaluated using P0 (Eq. 3.12). The cLHS

fitness function, inspired by the clhs R-package [51], first segments each an-

cillary data variable into n iso-probable quantiles (strata) according to its CDF

(Cumulative Distribution Function) and calculates the correlation matrix C(A).

The optimisation procedure starts by initializing a population of µ indi-

viduals, each constituting a candidate sampling-plan comprising n random

points. It then iterates over a serial execution of the variation and the selec-

tion operations and terminates at the predefined maximal number of objective
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Algorithm 4 The utilized mutation operator. Upon receiving a sampling-plan
π as input, PC represents the subset of unsampled sites. The operator swaps a
single site π(irmv) with a uniformly random unsampled site iadd. The modified
mapping π′ is returned as output.

Input: π,N {set of sampling points, overall number of points}

n← length(π)
PC ← {1, . . . , N} \ {π(1), . . . , π(n)}
irmv ← uniformly randomly from {1, . . . , n}
iadd ← uniformly randomly from PC

π′ = (π(1), . . . , π(irmv) iadd, . . . , π(n))

Return: π′

function evaluations. Technically, through CPU parallelization, 30 indepen-

dent optimisation runs are concurrently executed to ensure sufficient replica-

tions. Results of the last generation of all runs are Pareto-sorted to exclude the

dominated solutions, producing a portfolio of Pareto-optimal sampling-plans

to consider.

3.9 Sample-Size Identification

The choice of the sample-size n reflects the economic concept of marginal profit,

as each additional sampling-point presumably improves prediction accuracy

at the cost of increased operational expenses. We seek to quantify the informa-

tion gain by increments of sample-size, in a workflow of multiple optimization

tasks (Section 3.8) with n varying within a pragmatic budget range, in a modus

operandi that resembles cluster validity indices (Section 3.3). Several repre-

sentative solutions are selected from the approximated Pareto frontier of each

sample-size for evaluation by the following information-theoretic metrics:

1. AIC, which provides an approximation of a statistical model´s relative
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3.9 Sample-Size Identification

predictive accuracy, as measured by out-of-sample deviance [41]. First, a

linear model is fitted with a single ancillary data layer as a independent

variable Y and all other p layers X as dependent variables:

Y = β0 + β1X1 + · · ·+ βpXp + ε (3.13)

Assuming L̂ is the maximum value of the likelihood function of Y, and

p is the number of estimated parameters in the model, then AIC value of

the model is calculated by

AIC = 2p− 2 ln(L̂) (3.14)

These two steps are repeated for each ancillary data layer, and the mean

AIC value is returned.

2. MOKV, calculated as the mean variance resulting from ordinary Kriging

interpolation of ancillary data values at sampling locations onto the en-

tire field (using gstat R-package). As this operation is time-consuming,

we opted to run it only for ECaV and ECaH .

3. DKL, derived from the ratio of ancillary data distributions in a sample to

those of the entire field, given by

DKL

(
A ||A(p)

)
= −

∑
Pr(A) log

(
Pr(A(p))

Pr(A)

)
. (3.15)

To calculate KL divergence, Pr(A) is computed as the CDF of ancillary

data layers of the entire field, and Pr(A(p)) is the CDF of ancillary data

at locations given by a candidate sample, then DKL is computed via the

KL.plugin function in entropy R-package.

These three quantifiers are negatively-proportional to a model´s quality,
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thus a descending performance is expected as the sample-size grows. The re-

sults are averaged for each sample-size, hence by observing the charts one can

gain insight into the relation between the number of points and the latent qual-

ity of a sample. We are seeking a satisfactory sample-size that could be man-

ifested as a local minima or a knee-point, at which the rate of improvement

decreases.

3.10 Scheme Selection Criteria

Once an applicable sample-size n is found (Section 3.9), decision-making needs

to take place post-optimization, for selecting a singular sampling plan among

the candidate solutions. To this end, the same information quantifiers (AIC,

MOKV and DKL) are used to evaluate individual solutions. The performance

on each metric is ordered by ranking (1 for the best solution, 2 for the next

and so on). The ranks of each sample are aggregated to form a cumulative

performance rank that supports decision-making, which is likely to account

for additional practical and subjective aspects.

35



Chapter 4

Experimental Results

Summary

In this chapter we report on our empirical findings in two real-field settings.

The utilized units abbreviations read: [ha] for Hectare, [m] for meters.

4.1 Sampling for validation of SSMU delineation

As a part of a PA research focusing on fertilizer management, we have tested

the aforementioned methods to devise a soil-survey plan for a 37 ha plot in

Newe Ya’ar Research Center, located in Jezreel valley, northern Israel.

Ancillary data measurements were collected in the field right after winter

wheat was sown. EMI data was recorded on late November, 2018, following

a rain storm when soil moisture content was expected to be close to field ca-

pacity, yielding four proximal sensing layers (ECaV , ECaH ,MSaV and MSaH).

NDVI layer was constructed from data of a multi-spectral imaging campaign

in the field on mid December, 2018.

The pre-processing stage followed the procedure described in Section 3.2,
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4.1 Sampling for validation of SSMU delineation

involving ECa and MSa data compaction, log transformation and OK interpo-

lation to a grid at a resolution of 1×1 m, followed by a crop to field boundaries

and normalization.

The optimal number of clusters was determined by the suite of validity

tests described in Section 3.3, which assess the average compactness and sepa-

ration of the partitions generated by the algorithm. Although the PE and PC in-

dices did not show any local extrema (not shown), the FS and CHC tests agreed

on four management zones as an optimal number of clusters (Figure 4.1).

Figure 4.1: The fuzzy c-means validation indices used to determine the optimal
number of SSMUs of the study area, where k represents the number of clusters.

The field was then divided into four SSMUs using Fuzzy-c-means cluster-
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4.1 Sampling for validation of SSMU delineation

ing of the matrix A, which were subsequently smoothed with a median filter

to reduce zone fragmentation [54]. The feasible search space was defined by

exclusion of a 14 m buffer from field boundaries, and 7 m buffer from SSMUs´

boundaries.

Figure 4.2: Ancillary data layers: ECa and MSa in vertical and horizontal
modes, NDVI, and feasible search area (green).

Figure 4.2 provides a summary of ancillary data layers and the search space,

where red areas represent high ECa and MSa values, green areas represent

mid-range values while blue areas exhibit the lowest ECa and MSa values,

probably due to coarse texture and low soil moisture content. It seems that the

NDVI data add little to the clustering power because of relatively low spatial

variations in the NDVI signal of bare soil.

The adapted NSGA-II was executed in 30 parallel runs with the number of

points varying in our practical budget range n ∈ {10, 12, . . . , 48, 50} to solve P0

(Eq. 3.12), in the configuration described in Section 3.8. The Hypervolume Indi-
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4.1 Sampling for validation of SSMU delineation

cator (HVI) is a benchmark for the size of the subspace dominated by the evolv-

ing Pareto frontier, bound from above by an arbitrary reference point [20]. The

progress of the HVI during 30 parallel runs for sampling-plans with n = 26

points is depicted in Figure 4.3, exhibiting convergence. The corresponding

300 solution are displayed in Figure 4.4 as points over the objective space with

their associated ranks, and the cumulative Pareto frontier approximation as

well. By scrutinizing three Pareto-optimal solutions of each sample-size n

Figure 4.3: Statistical summary of the Hypervolume Indicator’s evolution along
30 runs, each featuring 50,000 generations, with n = 26 points.

with respect to the information-theoretic quantifiers described in Section 3.9,

we identified a certain sample-size, n∗ = 22, beyond which model improve-

ment is decaying, manifested as local minima in Figure 4.5. Upon selecting

this sample-size, additional two sets of solutions were generated to address

an operational constraint requiring at least 3 points per SSMU, repeating the

optimization task twice with 22 points.

To guide the choice of a particular plan, the Pareto-optimal solutions for

n = 22 (Figure 4.6) were evaluated by the measures MOKV and DKL and

ordered by rank accordingly. Evidently, aggregated ranks (Figure 4.7) suggest
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4.1 Sampling for validation of SSMU delineation

Figure 4.4: All solution-points, their rank and the Pareto front (rank 0, black
line) obtained by optimization of cLHS and max-min-diversity with n = 26
points.

Sample 13 as the best candidate plan. Inspection of the plan revealed that it was

not well spatially distributed. As Figure 4.6 suggest, this may be attributed to

its location on one extreme of the frontier. The selection process proceeded to

the next candidate, namely Sample 21 (Figure 4.8) which met the requirements,

and thus was selected as a blueprint.

Aftermath Provided with this algorithmically generated sampling-plan, the

agricultural field has been precisely sampled according to its prescription, fol-

lowed by laboratory analysis of more than 30 soil physico-chemical attributes

in 4 depths. The soil analysis results were used to assess the validity of the

SSMU delineation by a binary tree classification with soil properties as inde-

pendent variables, and SSMU assignment as dependent variable. The results

showed classification was accurate in 90.9% (20/22) of the cases, referring the

top-soil layer (0-30 cm).
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4.1 Sampling for validation of SSMU delineation

Figure 4.5: Statistical measures by sampling size. A knee-point is apparent
(marked by red line) in all measures at 22 (D-KL, AIC), and 20 (MOKV), indi-
cating a recommended sample-size of 22 points.
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4.1 Sampling for validation of SSMU delineation

Figure 4.6: Attained Pareto front for samples with 22 points and some candi-
date solutions with their respective position.

Figure 4.7: Ranking of sampling plans with 22 points by cumulative perfor-
mance of statistical measures (D-KL, MOKV).
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4.1 Sampling for validation of SSMU delineation

Figure 4.8: The selected soil sampling-plan in the 37 ha field, superimposed on
management units.
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4.2 Sampling for Calibration of Thermal Infra-Red Data

4.2 Sampling for Calibration of Thermal Infra-Red

Data

Another field experiment considered only a single ancillary data layer of Ther-

mal Infra-Red (TIR) measurements in a 10 ha sub-plot of the 37 ha field in

Newe Ya’ar (Section 4.1), with the aim of fitting a model between the TIR val-

ues and the soil texture (i.e., fractions of sand, clay and silt), so a spatial pre-

diction of these sparsely measured attributes can be done based on the dense

TIR data.

The TIR image values were normalized within [0, 1]. The feasible sampling

area (Figure 4.9) was defined by exclusion of 7 m buffer from field boundaries

and omission of the areas covered by vegetation, defined by Green-Red Vege-

tation Index (GRVI) data, derived from an aerial RGB image.

Figure 4.9: The feasible search space in the 10 ha plot.

A sample-size of 12 location was pre-defined by the expert commissioning

the survey, according to the requirements and applicability constrains. This
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4.2 Sampling for Calibration of Thermal Infra-Red Data

dictated a single run of 30 parallel optimization tasks (described in Section 3.8),

resulting with 300 solutions that were later screened out of the dominated solu-

tions, portraying the efficient frontier (Figure 4.10). The Hypervolume Indicator

progress (Figure 4.11) exhibits a convergence profile after about 2000 iterations,

suggesting that these results could be obtained with less computation.

Figure 4.10: Solutions points on the attained Pareto frontier (line) for schemes
with 12 sampling locations in the 10 ha plot. Both function are subject to mini-
mization.

Figure 4.11: Statistical summary of the Hypervolume Indicator’s evolution along
the run of 50,000 iterations (max, mean, min).

As the aim of this survey is to identify correlations between variables, we

selected only solutions with perfect stratification (i.e. cLHS score of 0), such
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4.2 Sampling for Calibration of Thermal Infra-Red Data

that the entire information spectrum is represented in the sample. This nar-

rowed down the selection to 9 optimal sampling schemes, which were evalu-

ated by the surveyor, accounting for considerations such as spatial dispersion

and vegetation growth since the last thermal imaging campaign. Scheme #2

(Figure 4.12) was selected and implemented for sampling.

Figure 4.12: The selected sampling-plan in the 10 ha plot.
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Chapter 5

Discussion

5.1 Summary and Conclusions

In this study we have demonstrated that multiobjective optimization with si-

multaneous targets of geographic dispersion and feature space stratification

is a suitable approach for soil sampling design. In the use-cases considered

here, application of EMOA in a real farm with cLHS and max-min-diversity

as objective functions produced many feasible solutions, found according to

the survey’s purpose on one edge of the approximated Pareto frontier when

stratification is beneficial for calibration, or at the knee-point area – offering an

apt compromise between the objectives.

A-priori evaluation of a sampling-plan quality is a key for an informed pro-

cess of sampling scheme selection. Several information-theoretic quantifiers

based on available ancillary data have been presented herein, alongside their

application to qualify actual sampling schemes and to optimize the sample-

size n, providing a decision-support tool for soil-survey planning.

Clearly, the proposed procedure can be improved, notably by introducing

a more sophisticated variation operator which preserves a perfect Latin hyper-

cube state, by devising additional information criteria for model evaluation,

by revising the selection process of candidate solutions to be included and by
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5.2 Future Work: Solow-Polasky Diversity

adding a termination criterion on HVI stagnation.

The versatility of the proposed approach makes it suitable to use with dif-

ferent objective functions and for different sampling scenarios. A comparative

analysis with other sampling methods is beyond the scope of this study, al-

though it could assess whether the relative complexity of this procedure is

worthwhile.

Next, we propose a possible direction of future research.

5.2 Future Work: Solow-Polasky Diversity

We want to consider the so-called Solow-Polasky Diversity [56; 60] as another

dispersion measure. It has been proposed in the field of biodiversity conser-

vation as a statistical measure for the diversity of a population of individu-

als, given by a set of vectors in a metric space. Given pairwise distances be-

tween sites i and j, dij (either within the geographical or the feature space),

let Ψ := (ψij) ∈ Rn×n be constructed with matrix elements ψij = exp (−γ · dij).

Then, the Solow-Polasky Diversity is defined as:

DSP = ~1TΨ−1~1, (5.1)

with ~1 denoting a vector of n ones, i.e., the summation is over all the elements

of Ψ−1; γ is a domain-specific normalization factor. The Solow-Polasky Diversity

strives to quantify the number of existing species within a given population.

It obtains its minimum at 1, meaning that the community consists of only one

species, and its maximum at n (the number of points), meaning that every

aspect is a unique species. Thus, the larger this scalar, the more diverse the

sample is.

Importantly, in the current study, the Solow-Polasky Diversity can be ap-

plied both to the feature space as well as to the geographical space. Given
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5.2 Future Work: Solow-Polasky Diversity

a sampling plan p defined by a mapping π, two measures can be computed,

using either
{
d
(G)
π(i),π(j)

}
or
{
d
(A)
π(i),π(j)

}
, denoted as

D
(G)
SP (p), D

(A)
SP (p),

respectively. We then formulate another bi-objective optimization problem:

[P1]

f3 := 1/D
(A)
SP (p) −→ min

f4 := 1/D
(G)
SP (p) −→ min

(5.2)

Preliminary calculations indicate that this is a promising direction. At the same

time, the objective functions exhibit sensitivity to the defining normalization

factor γ, which requires further investigation. Another interesting approach

would be to look into low discrepancy sampling methods [17], which provide

the promise of small approximation errors when combined with regression

models, but at the same time are computationally challenging.

Parts of this thesis were published in a conference proceedings [31]. We

intend to advance this study further through ongoing research.
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[4] BARCA, E., CASTRIGNANÓ, A., BUTTAFUOCO, G., DE BENEDETTO, D.,

AND PASSARELLA, G. Integration of electromagnetic induction sensor

data in soil sampling scheme optimization using simulated annealing. En-

viron Monit Assess 187 (2015). (5)

[5] BEZDEK, J. C. Cluster validity with fuzzy sets. Journal of Cybernetics 3, 3

(1973), 58–73. (26)

[6] BEZDEK, J. C. Mathematical models for systematics and taxonomy. (26)

[7] BOSSEK, J. ECR 2.0: A modular framework for evolutionary computation

in R. In Proceedings of the Genetic and Evolutionary Computation Conference

50



REFERENCES

Companion (New York, NY, USA, 2017), GECCO ’17, ACM, pp. 1187–1193.

(32)

[8] BOYD, S., AND VANDENBERGHE, L. Convex Optimization. Cambridge

University Press, New York, 2004. (8)

[9] BRABAZON, A., O’NEILL, M., AND MCGARRAGHY, S. Natural Computing

Algorithms, 1st ed. Springer Publishing Company, Incorporated, 2015. (10,

11, 12, and 13)

[10] BRUS, D. J. Sampling for digital soil mapping: A tutorial supported by r

scripts. Geoderma 338 (2019), 464–480. (3)

[11] COELLO, C. A. C., LAMONT, G. B., AND VELDHUIZEN, D. A. V. Evolu-

tionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolu-

tionary Computation). Springer-Verlag, Berlin, Heidelberg, 2006. (17)
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